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A B S T R A C T

Algebraic sets, i.e. solution sets of polynomial systems of equations,
model a wide variety of nonlinear problems, both in applied and
pure mathematics. One of the most foundational results in algebraic
geometry sais that every algebraic set has a unique decomposition into
irreducible algebraic sets and a frequent task is to decompose such an
algebraic set into its irreducible components, or to produce some kind
of coarser decomposition of the algebraic set in question. This task
comes up for example in certain problems in robotics on the applied
side and enumerative geometry on the pure side.
In this thesis, we present a series of algorithms solving such decompo-
sition problems for algebraic sets. All of these algorithms use Gröbner
bases for polynomial ideals at their core. Gröbner bases are an ubiqui-
tous tool in symbolic computation. They form the core of many higher
level algorithms and are implemented in all prominent computer
algebra systems.
Three of these algorithms produce so-called equidimensional decom-
positions of an algebraic set, i.e. they partition a given algebraic set
dimension-by-dimension. They are designed to avoid potentially costly
elimination operations and, partially, use features of so-called signature-
based Gröbner basis algorithms. Our software implementations of these
algorithms showcase their practical efficiency compared to state-of-
the-art computer algebra systems on examples of interest.
Another set of algorithms (respectively based on the F4 algorithm and
the FGLM algorithm use Hensel lifting methods in a novel way to
compute Gröbner bases for generic fibers of polynomial ideals. We
outline how these algorithms can be used as a core piece in known
algorithms for equidimensional or irreducible decomposition of an
algebraic set and exhibit their quasi-linear complexity in the precision
up to which certain power series are computed.
Finally, we give an extension of generic fiber techniques for equidi-
mensional decomposition of algebraic sets to compute Whitney stratifi-
cations of singular algebraic sets, improving on the state of the art. A
Whitney stratification partitions a singular algebraic set into smooth
pieces in a desirable way and has applications, for example, in physics.
We, in addition, give an algorithm to minimize a given Whitney strati-
fication.
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Einen Prozeß, mit dem man überhaupt nie fertig werden könnte, wie
das Zusammenzählen einer unendlichen Reihe, ermöglicht die
Mathematik unter günstigen Umständen in wenigen Augenblicken zu
vollziehen. Bis zu komplizierten Logarithmenrechnungen, ja selbst
Integrationen macht sie es überhaupt schon mit der Maschine; die
Arbeit des Heutigen beschränkt sich auf das Einstellen der Ziffern
seiner Frage und auf das Drehen an einer Kurbel oder ähnliches. Der
Amtsdiener einer Lehrkanzel kann damit Probleme aus der Welt
schaffen, zu deren Auflösung sein Professor noch vor zweihundert
Jahren zu den Herren Newton in London oder Leibniz in Hannover
hätte reisen müssen.

Robert Musil, Der Mathematische Mensch, 1913
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1
I N T R O D U C T I O N

scientific context

Polynomial systems, and their solution sets, arise in many applications to
model non-linear problems. To name just a few example applications,
they can be used to design cryptography schemes (e.g. Kipnis, Patarin,
and Goubin, 1999) and to model problems in robotics (e.g. Hills,
Baskar, Plecnik, and Hauenstein, 2024) and biology (e.g. Feinberg,
2019). If the polynomial system coming from some such application
has finitely many solutions, one may then wish to solve the polynomial
system which can either mean to list all of the solutions, or only a
subset, either exactly (e.g. if the sought after solutions have entries
in a finite field) or approximately (e.g. if the sought after solutions
are real numbers) or approximately with some bound on the error
of the approximations. If the polynomial system has infinitely many
solutions one may wish to extract only the isolated solutions or to
algorithmically describe the solution set of the polynomial system
in such a way that further algebro-geometric information about the
solution set can be extracted.
Very broadly, if one is interested in computing solutions to polynomial
systems of equations, then, depending on the context, two classes of
techniques and algorithms exist.
The first broad class of algorithms use numerical techniques, nowa-
days mostly based on the concept of homotopy continuation, see e.g.
Sommese, Verschelde, and Wampler (2005), which can be of inter-
est when solutions over the real or complex numbers are to be
computed. When implemented on modern computers, these algo-
rithms offer great efficiency, e.g. in the form of the Julia-package
HomotopyContinuation.jl, see Breiding and Timme (2018), Bertini,
see Bates, Hauenstein, Sommese, and Wampler (2013) or PHCpack, see
Verschelde (2014), however, due to their numerical nature, they can
suffer from issues of accuracy and inexhaustivity. We refer for example
to Colotti et al. (2024) where one wishes to extract approximations of
all real solutions of a polynomial system and numerical techniques
fail to find all such solutions.
The second class of algorithms use symbolic techniques. In the context
of polynomial system solving, this means that they perform arithmetic
over algebraic structures whose elements allow for an exact, finite rep-
resentation on a computer. A common use case is the computation of
solutions over finite fields, which is a typical problem in cryptography.
They can however also be used to compute real or complex solutions
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2 introduction

to polynomial systems. There, they are usually slower than numerical
algorithms, but can offer garantuees of accuracy and exhaustivity and
modern implementations, e.g. in the form of the Gröbner basis library
msolve (Berthomieu, Eder, and Safey El Din, 2021), are competitive
enough to attack problems of real interest, which can, on some oc-
casions, be intractable with numerical techniques, we refer again to
Colotti et al. (2024) for examples.
The contributions of this thesis fall into the second class, i.e. we design
symbolic algorithms to solve certain problems involving polynomial
systems and their solution sets (which will henceforth be called al-
gebraic sets in this thesis). To describe the problem, recall that one of
the most foundational theorems in algebraic geometry says that each
algebraic set may be written as a union of so-called irreducible algebraic
sets (called irreducible components), each of which has associated to it
a dimension invariant (see e.g. Part II in Eisenbud (1995) for a detailed
introduction to the dimension theory of ideals and algebraic sets). An
algebraic set is irreducible if it cannot be written (non-trivially) as a
union of other algebraic sets.

(a) The surface xy = 0 in
3-space with the two 2-
dimensional components
x = 0 and y = 0.

(b) An algebraic set with one compo-
nent of dimension one and one of
dimension two.

Figure 1.1: Two algebraic sets over R plotted by the computer algebra system
Maple.

Given a polynomial system in some application, often one is interested
in only computing solutions that are part of a component of a certain
dimension and one wishes to discard all other solutions or one would
like to analyze the solution set dimension by dimension. To illustrate
this we now give two examples.

Example 1.0.1. In robotics, image-based visual servoing is the task of
controlling a robot’s position and motion via a set of image features
observed through a camera. In García Fontán, Nayak, Briot, and Safey
El Din (2022), the authors deal with the PnL problem: A camera observes
n lines in 3-space via their projection to a camera plane and the task
is to estimate the camera’s position and orientation (given as a vector
in R6) from these projected lines.
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Each observed line may be parametrized by Plücker coordinates and
relating the time derivatives of these coordinates to the (angular and
linear) velocity of the camera yields

s ′ = Mnτc.

Here, τc describes the linear and angular velocity of the camera, s ′ is
the time derivative of the lines given in Plücker coordinates projected
on the camera plane and Mn is a matrix in three variables x,y, z (rep-
resenting the spatial coordinates) and 11 parameters (corresponding
to the choice of lines).
At points where Mn is singular (i.e. not of maximal rank), the pose
estimation of the camera through the position of the observed lines
faces accuracy and controllability issues. For actual design questions it
is therefore important to exactly describe the geometry of the algebraic
set described by the vanishing of the maximal minors of Mn.
In García Fontán, Nayak, Briot, and Safey El Din (2022) the authors
now observe, through extensive analysis and ad hoc methods, that
the algebraic set defined by the vanishing of the maximal minors of
Mn can have both 1-dimensional components and isolated points, i.e.
components of dimension zero.
This analysis can then inform design decision: The 1-dimensional
components can be avoided by arranging the observed lines in a
particular way.

Example 1.0.2. A plane conic is the solution set in R2 of an irreducible
quadratic polynomial equation in two variables. The Steiner problem
asks: Given five general (i.e. “random”) conics A,B,C,D,E in R2, how
many conics are tangent to A,B,C,D,E? The coefficients of the sought

Figure 1.2: Figure taken from www.juliahomotopycontinuation.org/3264/.
A conic in red, together with five tangent conics in blue.

conics tangent to A, . . . ,E are the isolated solutions to a polynomial
system S in 5 variables with 5 equations, each of degree 6. This poly-
nomial system is determined from the Jacobian criterion (e.g. Theorem

www.juliahomotopycontinuation.org/3264/
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16.19 in Eisenbud, 1995). The algebraic set defined by S, denoted
V(S), contains a surface (i.e. a 2-dimensional irreducible component)
whose points correspond to conics that are squares of linear forms. It
thus turns out that to properly count the number of conics tangent
to A, . . . ,E requires to compute some sort of description of just the
isolated solutions of S, i.e. the zero-dimensional irreducible compo-
nents of V(S). We refer to Breiding, Sturmfels, and Timme (2020) for
more details on the problem and a numerical approach to solve it. We
will treat the polynomial system S as a benchmark for our algorithms
throughout this thesis and show that the algorithms we design are able
to compute such a description of the isolated solutions where other
computer algebra software, using state-of-the-art symbolic techniques,
fail.

While both problems in Example 1.0.1 and Example 1.0.2 can be dealt
with by using (non-trivial) ad hoc methods, they nonetheless show
the interest in having an automatized approach to partition a given
algebraic set dimension by dimension.
To now more precisely introduce the problem(s) that we will be
working on, let us introduce some notation. Let K be a field and
let R := K[x1, . . . , xn] be the polynomial ring in n variables over this
field. Let K be an algebraic closure of K and let An be the affine space
K

n. Given polynomials f1, . . . , fr ∈ R, consider the algebraic set

X := V(f1, . . . , fr) := {p ∈An | f1(p) = · · · = fr(p) = 0} .

These sets define the closed sets of a topology on An, the Zariski
topology. As mentioned above, X may be written, uniquely up to
reordering, as a union of finitely many K-irreducible algebraic sets (see
Definition 2.1.1 and Theorem 2.1.1):

X =

s⋃
i=1

Xi.

Here, an algebraic set is K-irreducible if it cannot be written, non-
trivially, as the union of two algebraic sets defined by polynomials
in R. Each such Xi has associated to it a notion of dimension (see
Definition 2.1.2) and we say that X is equidimensional if each of the Xi

has the same dimension. If X is not equidimensional (as is the case in
Example 1.0.2 above) then the largest part of this thesis deals, directly
or indirectly, with the computation of an equidimensional decomposition
of X, i.e. we will want to compute polynomials cutting out algebraic
sets Y1, . . . , Yt such that

X =

t⋃
i=1

Yi

and such that each Yi is equidimensional. Before we outline our
contributions exactly let us give an overview of related works.
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related works

In the world of symbolic computation, a vast family of algorithms
exists to compute (equidimensional or irreducible) decompositions of
algebraic sets. We distinguish them first by the data structure they use
to encode algebraic sets.

Geometric Resolutions

Geometric Resolutions form a “lazy” encoding of equidimensional al-
gebraic sets. This means that they describe a given algebraic set on a
Zariski open, dense subset of itself. The basic mathematical idea un-
derlying geometric resolutions is the following: Suppose that X ⊂An

x
is equidimensional of dimension d, with coordinates x = {x1, . . . , xn}
on An

x . Choose a generic affine subspace Ad
z ⊂An of dimension d in

new coordinates z := {z1, . . . , zd}. Choose another generic linear com-
bination y of the variables x with corresponding affine space A1

y. Then
projecting X to Ad

z ×A1
y will yield a hypersurface X ′ in Ad

z ×A1
y, i.e.

X ′ is cut out by a single polynomial g in the d+ 1 variables z ∪ {y}:
X ′ = V(g). Furthermore, X will be birational to X ′, i.e. for almost every
specilization of the z-variables (i.e. for every choice of specialization
outside of a Zariski open subset of Ad

z ) we obtain the corresponding
points of X as parametrizations over the corresponding zeros of the
univariate specialization of the polynomial g. A geometric resolution
for X consists then, essentially, of the variables z and y, the polynomial
g and the parametrizations of the variables x over the vanishing locus
of g.

Figure 1.3: The curve in black projects birationally to the curve in blue, lying
in the subspace given by the y- and z-coordinate. For almost every
choice of specialization of z = a, we obtain the corresponding
points on the black curve via a parametrization over the blue
curve.

Algorithms for decomposing algebraic sets into equidimensional ones
where each output component is encoded by a geometric resolution
over an affine subspace with respect to which the component is in
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Noether position have been developed in Lecerf (2000, 2003). Noether
position means here, that the fiber of X over each point in Ad

y is
zero-dimensional, i.e. consists only of finitely many points. The de-
compositions produced by these algorithms allow to work with the
algebraic set in question only inside the Zariski open sets which are
attached to the geometric resolution of each output component.
In Schost (2003) the author develops a decomposition algorithm which
avoids the Noether position assumption, i.e. here the subspace Ad

z is
given and one asks only that the projection of X to Ad

z is dominant, i.e.
the closure of the image of this projection is the entire Ad

z . A restriction
for this algorithm is that the input algebraic set X be then given by
exactly n− d equations. The algorithm then computes a geometric
resolution of X outside of the locus where the Jacobian matrix of our
n− d equations is rank deficient.
These algorithms utilize so-called straight line programs for fast, division-
free evaluation of polynomials and a formal Newton iteration algo-
rithm, which relies on assuring certain non-degeneracy assumptions.
This formal Newton iteration is used to lift a geometric resolution
with the variables in z specialized to some value to a one-dimensional
representation, after which the intersection of the algebraic set en-
coded by the geometric resolution with a hypersurface can be again
given in terms of a “specialized” geometric resolution.
These algorithms obtain the best known complexity bounds for equidi-
mensional decomposition, polynomial in a quantity derived from the
degree of the algebraic set cut out by the input system. Recall that the
degree of an algebraic set X of dimension d is the number of points in
the intersection of X with d general hyperplanes.
We also mention Jeronimo and Sabia (2002) for an approach using
similar techniques.
The algorithms mentioned above are not implemented in any of the
more widely used computer algebra systems such as Maple, Singular
or Macaulay2.

Triangular Sets and Regular Chains

Triangular sets also encode equidimensional algebraic sets “lazily” by
describing them on a Zariski open dense subset of themselves. The
basic idea is that an equidimensional algebraic set of codimension c

should be cut out, almost everywhere, by exactly c equations. We then
enforce these c equations to have in addition a triangular structure.
More precisely, let y := {y1, . . . ,yc} ⊂ x and let z := x \ y. A triangular
set T then consists of c polynomials

T := {f1(z,y1), f2(z,y1,y2), . . . , fc(z,y1, . . . ,yc)}.
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Regarding each fi as a univariate polynomial in yi, each fi has a
leading coefficient hi ∈ K[z,y1, . . . ,yi−1]. Let h := lcm(h1, . . . ,hc).
Then each triangular set has attached to it the locally closed set

W(T) := V(f1, . . . , fc) \ V(h) ⊂An.

Recall that a locally closed set is the set difference of two algebraic
sets. Therefore, a triangular set T as above describes an algebraic set
away from the degenerate points given by V(h).
Such triangular sets have their origin in so-called Wu-Ritt characteristic
sets (see e.g. Chou and Gao, 1990; Gallo and Mishra, 1991; Ritt, 1950;
Wang, 1993; Wu, 1986) which have proven particularly effective in the
context of differential algebra.
Of particular importance, especially in the realm of equidimensional
decomposition, are certain special triangular sets called regular chains,
introduced by Kalkbrener (1993) and Lu and Jingzhong (1994). A
regular chain is a triangular set T as above where, essentially, every
solution of the first k equations of T can be lifted to a solution of
the first k + 1 equations. A regular chain T has good algorithmic
properties with respect to the attached locally closed set W(T): In
particular we can test whether a given polynomial f ∈ K[x] vanishes
on the Zariski closure W(T) of W(T), where the Zariski closure of a
given set in An is the smallest algebraic set containing it. Moreover,
every triangular set T as above has attached to it an ideal I(T) s.t.
V(I(T)) = W(T). Then the ring K(z)[y]/I(T) is a product of fields
and when T is a regular chain, one may use suitable generalizations
of algorithms for univariate polynomials over fields to univariate
polynomials over products of fields to work with regular chains, in
particular the Euclidean algorithm, through the so-called D5 principle
(Della Dora, Dicrescenzo, and Duval, 1985).
Two kinds of decompositions may be computed using regular chains:
Given an algebraic set X ⊂An one may either compute regular chains
T1, . . . , Tr s.t.

X =

r⋃
i=1

W(Ti),

henceforth called a Lazard decomposition, see in particular Lazard (1991),
or regular chains T1, . . . , Ts s.t.

X =

s⋃
i=1

W(Ti),

henceforth called a Kalkbrener decomposition, see again Kalkbrener
(1993) and Lu and Jingzhong (1994). While a Lazard decomposition
yields a complete description of X, it may be slower to compute than
a Kalkbrener decomposition, especially on more difficult examples
of positive dimension, see e.g. Aubry and Maza (1999). A Kalkbrener
decomposition, however, allows one only to work with the points of X
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which lie outside of the locus of degeneracy of the produced triangular
sets.
Algorithms using regular chains are prominently part of the computer
algebra system Maple (Chen and Moreno Maza, 2012; Chen et al., 2007).
We further refer to Hubert (2003) and Wang (2001) for comprehensive
introductions to the subject and to Aubry, Lazard, and Maza (1999) for
a theoretical account as to how certain different notions of triangular
sets relate to each other.

Techniques based on Gröbner Bases

The notion of a Gröbner basis differs, philosophically, from geometric
resolutions and triangular sets in that an ideal-theoretic, instead of
a geometric, point of view is taken. A Gröbner basis depends on
two parameters: A polynomial ideal I ⊂ K[x] and a monomial order
≺, which is a total order on the set of monomials in K[x] satisfying
certain additional conditions.
A Gröbner basis G of an ideal I ⊂ K[x] w.r.t. to ≺ is then a certain
finite generating set of I which allows for well-behaved multivariate
polynomial long division with terms ordered w.r.t. ≺. More precisely,
a polynomial f ∈ K[x] is contained in I if and only if multivariate
polynomial long division of f by G returns zero.
Through this property, in contrast to geometric resolutions and trian-
gular sets, G represents the algebraic set V(I) everywhere, i.e. there is
no locus of degeneracy in V(I) that cannot be described by G. Gröbner
bases can also be used to compute with any polynomial ideal (and
thus any algebraic set) and not just equidimensional ones as is the case
for geometric resolutions and triangular sets. This, together with the
fact that Gröbner bases can represent algebraic sets everywhere, means
that, from G, various algebro-geometric properties about I or V(I) may
be extracted, such as dimension or degree, and most ideal-theoretic
and geometric operations of interest, such as computing the intersec-
tion of ideals or taking the image of algebraic sets under algebraic
maps, become computable. This gives them a great deal of flexibility,
in particular in how they can be used to design algorithms for various
tasks involving algebraic sets or polynomial ideals, making them part
of the backbone of many popular computer algebra systems.
If one wants to use Gröbner basis techniques to compute an (equidi-
mensional or irreducible) decomposition of an algebraic set then there
are two popular approaches:
The first uses projections of algebraic sets, or elimination theory. Re-
call that a Gröbner basis depends on a chosen monomial order and
projections become computationally available using so-called block
orders. Given an algebraic set X via a polynomial ideal I, i.e. X = V(I),
we choose a partition x = z ⊔ y s.t. X projects dominantly to the z-
space Ad

z , i.e. the closure of the image of X in Ad
z is Ad

z itself. Here,
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d = dim(X). Then, we compute a Gröbner basis of I w.r.t. a suitable
block order which then gives a Gröbner basis of the generic fiber of I
w.r.t. z, denoted in this thesis gen(I, z) := IK(z)[y].

Figure 1.4: An algebraic set X = V(I) consisting of two lines and several
isolated points. When projecting to the z-axis, the generic fiber
gen(I, z) “sees” only those components which project dominantly
to the z-axis, i.e. only the horizontal line X1.

Now, one can compute the ideal J := gen(I, z) ∩K[x] and V(J) will
consist only of those components of X which project dominantly to Ad

z
themselves, in particular V(J) will be equidimensional of dimension
d. This gives the basic approach of computing an equidimensional
decomposition using this approach.
When an irreducible decomposition is desired instead, one replaces the
first variable in y by a generic linear combination of the variables in y
and projects, again, using block orders, to the space Ad

z ×A1
y. Under

some additional assumptions, the resulting Gröbner basis will then
in fact give a geometric resolution of those components of X which
project dominantly to the z-axis, i.e. of V(J). Then, a factorization of
the univariate polynomial g in this geometric resolution yields an
irreducible decomposition of V(J) and thus a subset of the irreducible
components of X.
On any given example, a potential difference compared to working
with geometric resolutions directly is that no Noether position as-
sumptions or restrictions on the input are required. This potentially
lowers the degrees of the algebraic sets with which we are computing,
making computations easier and producing a finer decomposition
with more output components than there are dimensions.
We should again emphasize that in contrast to algorithms using ge-
ometric resolutions or triangular sets, the above algorithms using
Gröbner bases work ideal-theoretically as opposed to geometrically.
This means that they can also be adapted to obtain ideal-theoretic
decompositions, such as a primary decomposition of a polynomial ideal.
In Chapter 8 we present an application of these kinds of techniques
where this turns out to be crucial.
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We refer to the classical references Caboara, Conti, and Traverso (1997),
Gianni, Trager, and Zacharias (1988), and Krick and Logar (1991),
to the survey given by Decker, Greuel, and Pfister (1999) and to
Section 3.2 for more details on the kind of algorithms sketched above.
The second approach using Gröbner bases relies instead on a certain
homological characterization of dimension based on the Auslander-
Buchsbaum formula, see Theorem 19.9 in Eisenbud (1995). This ap-
proach is first presented in Eisenbud, Huneke, and Vasconcelos (1992):
An exact “homological formula” for the components of highest dimen-
sion of a polynomial ideal is given and can be made computationally
explicit via the computation of syzygies and free resolutions of poly-
nomial ideals. Eisenbud, Huneke, and Vasconcelos (1992) also present
an elimination-free algorithm for primary decomposition, based on
normalization of polynomial ideals. We refer to Decker, Greuel, and
Pfister (1999), Greuel and Pfister (2007), and Vasconcelos (1998) for
further details.
For computation over the rational numbers, the techniques mentioned
above can be combined with multi-modular techniques to avoid the
well known problem of “coefficient swell” when computing directly
over the rational numbers. These can then be combined with dedicated
techniques and implementations for finite fields. We refer e.g. to
Ishihara (2022), Noro and Yokoyama (2004), and Yokoyama (2002).
Finally, we mention the ad hoc algorithm given in Moroz (2008) which
shares many ideas with the algorithm we develop in Chapter 5. We
will comment on the differences below.
Algorithms using Gröbner bases are prominently implemented in all
modern computer algebra systems. Both the techniques above using
elimination and the ones using homological techniques can be found,
for example, in the computer algebra systems Maple, OSCAR, Singular,
Macaulay2 and Magma.

overview of contributions

Chapters 4, 5 and 6 deal with the problem of equidimensional decom-
position of algebraic sets using Gröbner basis computations. While
we give no complexity results therein, we show experimentally that
these algorithms consistently outperform implementations of some of
the algorithms introduce above in state-of-the-art computer algebra
systems on a wide range of examples, sometimes by several orders of
magnitude.
In Chapter 7, we develop dedicated algorithms to compute Gröbner
bases of generic fibers of polynomial ideals, defined as above. As
hinted at before, these algorithms can be used as cornerpieces for
equidimensional and irreducible decomposition as well. This chapter
contains a complexity analysis of the algorithms presented therein.
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As a potential application of the algorithms presented in Chapter 7

and as an extension to algebraic set decomposition using generic
fibers of ideals as introduced above, in Chapter 8, we show how
Gröbner bases of generic fibers can be used to compute so-called
Whitney stratifications of singular algebraic sets. In addition, we give
an algorithm to minimize a given Whitney stratification.
Finally, in Chapter 9 we outline some research perspectives following
from the results presented in this thesis.
Let us now give a more detailed overview of our contributions.

Computation of Nondegenerate Loci

The first chapter in Part ii, Chapter 4, based on the results given
by Eder, Lairez, Mohr, and Safey El Din (2023b), published in the
Journal of Symbolic Computation, deals with the computation of the
nondegenerate locus of a sequence of polynomials F := (f1, . . . , fc). The
nondegenerate locus is the set of points p in V(F) where F forms a
regular sequence. F is a regular sequence if for every i and every g ∈ K[x]
with gfi ∈ ⟨f1, . . . , fi−1⟩ we have g ∈ ⟨f1, . . . , fi−1⟩. Geometrically,
regular sequences define complete intersections, which are algebraic sets
such that the codimension of every irreducible component matches
the number of defining equations.
Equivalently, the nondegenerate locus of F is the set of points p in V(F)

where every irreducible component of V(F) passing through p has
codimension c, so that the closure of the nondegenerate locus gives us
precisely the components of codimension c. Note that in Example 1.0.2
this set encodes precisely the sought after isolated solutions.

(a) V(x2z2 + x2y− z3 − x2 − yz+ z,
x4z− x2y− x2z+ yz)

(b) V(x2 + z2 − 1, x2 − y)

Figure 1.5: The algebraic set on the left-hand side is cut out by two equations.
The closure of the nondegenerate locus on the right thus gives
the components of codimension two, i.e. dimension one.

The key idea of the algorithm presented in Chapter 4 is to utilize a
certain feature of so-called signature-based Gröbner basis algorithms,
the first of which was the F5 algorithm (Faugère, 2002). Very roughly,
these algorithms can be thought of as algorithms which build and
echelonize a series of matrices, called Macaulay matrices. A Macaulay
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matrix associated to F organizes several monomial multiples of F as
rows into a matrix, with columns labeled by the union of the supports
of these monomial multiples. Their special feature, compared to other
Gröbner basis algorithms which follow a similar strategy, is that no
row in these matrices is reduced to zero during echelonization if and
only if F is a regular sequence. By contraposition, this means that,
when a reduction to zero occurs, F is not a regular sequence. More
precisely, when we meet a reduction to zero, then it corresponds
exactly to an element g ∈ K[x] which satisfies gfi ∈ ⟨f1, . . . , fi−1⟩
but g /∈ ⟨f1, . . . , fi−1⟩ for some i. We can then immediately use the
knowledge of this g to change the polynomial system F on the fly,
during a Gröbner basis computation, so that at the end we obtain a
Gröbner basis of an ideal cutting out the closure of the nondegenerate
locus of F.
A frequent strategy employed by a number of the algorithms men-
tioned in the last section is that they compute a decomposition incre-
mentally, equation-by-equation, i.e. first for V(f1), then for V(f1, f2)
and so on until all equations have been processed. This structurally
simplifies the problem of equidimensional decomposition. This incre-
mental structure is a feature shared with a certain class of signature-
based Gröbner basis algorithms, i.e. they compute a Gröbner basis for
the ideal generated by F equation-by-equation. This, together with the
feature above, makes them suitable for the task of computing an ideal
cutting out the closure of the nondegenerate locus of F.
The algorithm presented in this chapter works in stark contrast to
the previously known decomposition algorithms using Gröbner bases
introduced above: In these algorithms Gröbner basis computations
are used as a black box, i.e. they ask only for certain Gröbner bases
of certain ideals, no matter the algorithm which computes them. In
contrast to that, our algorithm is a dedicated Gröbner basis algorithm for
the task at hand, i.e. we change the process of computing a Gröbner
basis itself to obtain the sought after nondegenerate locus at the
end of the computation. This potentially means that the polynomials
involved have lower degree: We discover equations cutting out the
nondegenerate locus before a Gröbner basis of ⟨F⟩ is computed. We
give, in Chapter 4, some experimental data which shows the validity
of this approach independent of implementational considerations.

Incremental Computation of Equidimensional Decompositions

The next chapter, Chapter 5, based on the results given by Eder,
Lairez, Mohr, and Safey El Din (2023a), published and presented at
ISSAC 2023, presents an algorithm to compute a full equidimensional
decomposition of an algebraic set. More precisely, given a sequence
F := (f1, . . . , fr) ⊂ R as before, we compute a set of pairwise disjoint
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locally closed sets (see Definition 2.2.1) Y1, . . . , Ys of the shape Yi =

Xi \ V(hi), each with equidimensional Zariski closure, such that

V(F) =

s⋃
i=1

Yi.

As in Chapter 4, the algorithm proceeds incrementally, i.e. by com-
puting such a decomposition first for V(f1, f2), then intersecting and
decomposing the resulting locally closed sets with f3, then with f4
and so on, until all fi have been processed. We should note again, that
this incremental idea is used frequently in decomposition algorithms
using geometric resolutions or regular chains present in the literature
and also for the algorihm given by Moroz (2008) using Gröbner bases.
Essentially, this incremental structure reduces the problem of equidi-
mensional decomposition to the following: Given an equidimensional
algebraic set X and f ∈ R, compute an equidimensional decomposition
of X∩V(f).
To perform this operation, the algorithm presented in this chapter
again uses Gröbner bases in a core way. Our algorithm does not
rely on elimination theory, giving us the freedom to compute our
Gröbner bases using the so-called degree reverse lexicographic (DRL)
monomial order instead of being forced to use block orders. It has
been observed many times that Gröbner basis computations tend to
behave better when using the DRL order instead of block orders, this
observation has been justified from a complexity theoretic view by
Lazard (1983). The incremental nature of our algorithm also allows to
avoid extensive syzygy computations (as is required for the algorithm
by Eisenbud, Huneke, and Vasconcelos, 1992), essentially we only use
partial information about the polynomial relations of F.
While we do use Gröbner bases, and thus an ideal-theoretic instrument,
we do design our algorithm from a geometric perspective, working
explicitly with a data structure encoding a locally closed set, derived
from a Gröbner basis of an ideal cutting out the closure of this locally
closed set. Working with locally closed sets explicitly is a property
shared with the algorithms using regular chains. In the incremental
approach, this turns out to have the following advantage: It naturally
removes from the output sets of our iterative algorithm certain super-
flous irreducible components that appear during the decomposition.
To illustrate this consider the following example:

Example 1.0.3. Let R := Q[x,y, z], X := V(xy), f := xz. To decompose
X∩V(f) into equidimensional components one may start by decom-
posing X = V(x) ∪V(y). Then one intersects these two components
with V(f) to obtain the equidimensional decomposition X ∩V(f) =

V(x)∪V(y, xz). The latter set has the irreducible component V(y, x)
which is embedded in V(x) and thus superflous in the decomposition.
If one instead splits into a disjoint union X = V(x) ∪ [V(y) \ V(x)]

and again intersects both components with V(f) one obtains X =
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V(x) ∪ (V(y, z) \ V(x)) and the closure of the latter component no
longer has the irreducible component V(y, x).

Second, when an iterative equidimensional decomposition algorithm
produces redundant components, then, if they are not deduplicated,
one may suffer from an exponential blow-up in the number of compo-
nents: if one has decomposed X =

⋃
i Xi with the Xi sharing a large

number of irreducible components then decomposing each Xi ∩V(f)

to obtain a decomposition of X∩V(f) results in an even more redun-
dant decomposition. Because we use locally closed sets to model our
equidimensional sets we are enabled to carefully design a decompo-
sition procedure which avoids the production of such redundancies.
This comprises a central difference with the algorithm by Moroz (2008):
While this algorithm obtains a slightly stronger decomposition than
our algorithm (it decomposes into local complete intersections and not
just into equidimensional locally closed sets) it does introduce redun-
dancies in every decomposition step 1. On the polynomial system
Sing(2,10) (see Appendix A.1 for an explanation of this polynomial
system) our algorithm finishes computation in 2.9 seconds while the
redundancies introduced by the algorithm by Moroz (2008) cause it to
not finish within several minutes of computation.
Borrowing further from the design approach of algorithms using
triangular sets we also adopt the heuristic that it is a good idea to
decompose given algebraic sets as often and as finely as possible when
working with them. This philosophy is baked into a certain recursive
structure of our algorithms which exists so as to decompose a given
locally closed set as much as possible given generating sets for certain
ideals. Coupled with the fact that we try to decompose irredundantly
and avoid elimination theory as much as possible this tends to yield
locally closed sets whose underlying ideals have low degree which
speeds up necessary Gröbner basis computations. Supporting this,
an implementation of our algorithm in the computer algebra system
OSCAR (Decker et al., 2025) is demonstrated to outperform existing
similar algorithms in state-of-the-art computer algebra systems by
several orders of magnitude.

Non-Incremental Computation of Equidimensional Decompositions

The algorithm last presented, treated in detail in Chapter 5, has poten-
tially two issues:

(1) Recall that this algorithm computes the desired equidimensional
decomposition by processing the equations f1, . . . , fr one-by-one.
This can cause issues because, in Chapter 5, we are representing

1 In Example 1.0.3 our algorithm obtains the decomposition V(xy, xz) = V(x) ∪
(V(y, z) \ V(x)) while the algorithm by Moroz (2008) obtains the decomposition
X∩V(f) = V(x)∪V(y, xz).
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our locally closed sets using Gröbner bases of certain associated
ideals. Experimentally, the computations of these Gröbner bases
tend to be hardest “in the middle”, i.e. when about half of the
equations have been processed, in particular when the algorithm
presented in Chapter 5 does not produce any decomposition af-
ter having processed the first few equations. This behaviour can
be somewhat explained by complexity statements for Gröbner
basis computations under some regularity assumptions: Indeed,
for a so-called regular sequence in strong Noether position, the cost
of computing a Gröbner basis equation-by-equation by eche-
lonizing Macaulay matrices is higher than in the final steps
(Bardet, Faugère, and Salvy, 2015). Dimension dependent com-
plexity bounds provide another confirmation of this behaviour,
see Hashemi and Seiler (2017).

(2) While the locally closed output sets Y1, . . . , Ys of this algorithm
are pairwise disjoint, some of them might be redundant when
taking Zariski closures, i.e. we may have Yi ⊆ Yj for certain
i ̸= j. This is a property shared with Lazard decompositions
into triangular sets. Since we, however, work with Gröbner bases
instead of regular chains, we can explicitly work with the Zariski
closures of our locally closed sets. Thus, one would like to get
rid of those locally closed sets which become superflous once
we take their Zariski closures.

The algorithm presented in Chapter 6, developed independently by the
author of this thesis, tackles both issues while having many structural
similarities and similar design goals as the algorithm presented in
Chapter 5: It relies, in a key way on a non-incremental characterization
of regular sequences by Vasconcelos (1967) (see Theorem 2.5.1) in
terms of their syzygies, i.e. in terms of their polynomial relations.
This theorem again allows us to decompose without having to rely
on elimination theory or heavy homological algebra and it allows us
to design an algorithm which considers the entire input sequence F

at once which, in turn, enables us to adapt certain subroutines from
Chapter 5 in order to produce, again, a set of pairwise disjoint locally
closed sets Y1, . . . , Ys such that, this time

V(F) =

s⋃
i=1

Yi,

i.e. we produce something analogous to a Kalkbrener decomposition
into regular chains.
Using Gröbner bases gives us the flexibility of designing an algorithm
whose output satisfies complete irredundancy: The output components
Yi do not share irreducible components among each other and the
union of the irreducible components of each Yi gives precisely the
irreducible components of V(F). The decomposition produced by the



16 introduction

algorithm in Chapter 6 thus satisfies a certain strong minimality con-
dition. In recognition of the algorithm presented in Kalkbrener (1993),
and in analogy to Kalkbrener decompositions into regular chains,
we call a decomposition as produced by the algorithm presented in
Chapter 6 a Kalkbrener partition.
In order to algorithmically use Vasconcelos’ Theorem 2.5.1 mentioned
above, we rely again, as in Chapter 4, on signature-based Gröbner
basis algorithms to facilitate the necessary syzygy computations in an
efficient way.
The proposed algorithm is shown to outperform the algorithm of
Chapter 5 on a range of examples.

Computing Gröbner Bases of Generic Fibers

The object under study in Chapter 7, based on the results given by
Berthomieu and Mohr (2024), published and presented at ISSAC 2024,
is the following: Fix a polynomial ideal I ⊂ K[x, z] in two finite sets of
variables x and z such that the map K[z]→ K[x, z]/I is injective and
such that the generic fiber

gen(I, z) := IK(z)[x]

of I is a zero-dimensional ideal. Geometrically, this means that the
projection of V(I) to the affine space in the z-coordinates is dominant
with almost everywhere zero-dimensional (i.e. finite) fiber given by
specialization of gen(I, z), as in Figure 1.4.
As mentioned above, if one is able to compute Gröbner bases of
such generic fibers (w.r.t. a suitable block order, depending on the
task at hand) then one obtains algorithms both for equidimensional
decomposition and for irreducible decomposition, this serves as the
primary motivation for Chapter 7.
In Chapter 7 we present two algorithms for computing Gröbner bases
of generic fibers by relying on classical Hensel lifting techniques: If we
let m := ⟨z⟩, then, under the (probabilistic) assumption that the origin
in the z-space lies outside of a certain hypersurface, we will compute
the desired Gröbner basis G of gen(I, z) by computing its image in
(K[z]/m)[x] ≃ K[x] and then lifting it modulo increasing powers of m.
When this power is large enough, we can then recover G using the
classical technique of Padé approximation. With this approach, we also
expect that our algorithm can be transported without much difficulty
to the setting where a Gröbner basis G of a zero-dimensional ideal in
Q[x] is required: Given p a well-chosen prime number and k ∈ N∗

sufficiently large, our algorithm would extract G from its image in
(Z/pZ)[x] and then lifting it modulo pk for sufficiently large k.
The first algorithm combines Hensel lifting techniques with the FGLM
algorithm given in Faugère, Gianni, Lazard, and Mora (1993). The
FGLM algorithm converts the Gröbner basis w.r.t. one monomial order
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to a reduced Gröbner basis w.r.t. another monomial order when I

is zero-dimensional (equivalently if V(I) consists of finitely many
points). Recall that this is the case if and only if K[x]/I is a finite-
dimensional K-vector space. Then, having a Gröbner basis of I w.r.t.
one monomial order enables us to perform linear algebra in this vector
space which, in turn, enables us to find a Gröbner basis of I w.r.t.
any other monomial order. As mentioned before, depending on the
monomial order for one wishes to compute a Gröbner basis, this can
be easier than computing it with a “direct” approach such as with
the famous Buchberger algorithm (Buchberger, 1965) or F4 (Faugère,
1999).
Because our modular lifting approach reduces the problem to comput-
ing just with the zero-dimensional ideals I+mk, we can then adapt
this basic strategy of the FGLM algorithm to our setting. Our algo-
rithm thus enables potentially efficient computation of Gröbner bases
of generic fibers w.r.t. block orders, which is in particular needed for
the computation of irreducible decompositions using Gröbner bases
outlined above. Our algorithm computes a Gröbner basis of gen(I, z)
for a monomial order of interest using Gröbner bases of the ideals
I+mk for another monomial order.
The description and discussion of this algorithm takes up most of
Chapter 7. When a “quadratic lifting strategy” is chosen, we show
that this algorithm runs in a complexity quasi-linear in the number
of terms in z whose partial degrees are large enough so as to recover
the desired Gröbner basis of gen(I, z) using Padé approximation,
see Theorem 7.3.2. This complexity statement would then also likely
transport to a p-adic setting as outlined above.
The second algorithm is a combination of the same Hensel lifting
technique with the classical F4 algorithm introduced by Faugère (1999)
to compute Gröbner bases. It adapts the technique of so-called Gröb-
ner tracers introduced by Traverso (1989), which are used for multi-
modular Gröbner basis computations, to the setting of modular lifting.
The F4 algorithm works again by echelonizing a series of Macaulay
matrices associated to the input polynomials. Only those rows which
do not reduce to zero during this echelonization contribute to the out-
put Gröbner basis and a Gröbner tracer is essentially a data structure
which “remembers” which the choice of reducers and which rows did
not reduce to zero during the computation. When e.g. a Gröbner basis
over Q is required, the idea is then, in a multi-modular setting, to
run the F4 algorithm module one prime p, extract a tracer out of this
computation, and apply the computational steps of this tracer modulo
other primes p1, . . . ,pr. This is more efficient then rerunning the F4

algorithm for every new prime. With probability one, this will give the
image of the desired Gröbner basis G over Q modulo p and p1, . . . ,pr.
G is then recovered using the Chinese Remainder Theorem.
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Our adaptation of Gröbner tracers to a modular lifting strategy then
poses the task of lifting the echelonizations computed by the F4 algo-
rithm running on the image of I in K[x, z]/m ∼= K[x] modulo larger
and larger powers of m. In other words, we have to solve the problem
of lifing an LU-factorization of a given matrix with coefficients in
K[z]/mk to K[z]/mk+1. For the case where z = {z} is a single variable,
we show how to do this in Theorem 7.4.1 which then yields a complex-
ity statement for this second algorithm in line with the complexity of
other modular lifting algorithms, i.e. it is the complexity of computing
the image of G in (K[z]/m)[x] times the square of the number of terms
up to degree δ in z where δ is chosen sufficiently large so as to extract
G out of its image in (K[z]/mk)[x], see Corollary 7.4.1.
We also briefly point out how both algorithms given in Chapter 7 can
potentially be profitably combined.
Let us also comment on how the algorithms we design in Chapter 7

relate to other methods of computing Gröbner basis of generic fibers.
As mentioned above, a Gröbner basis of gen(I, z) can be computed by
computing a Gröbner basis for I w.r.t. a suitable block order. Besides
the aforementioned issues when it comes to Gröbner basis compu-
tations w.r.t. block orders, another problem is potentially that this
computation involves the entire I while the output encodes only a
subset of the components of V(I), as in Figure 1.4. Thus would one
would like to have algorithms whose computations reflect the fact that
gen(I, z) is potentially simpler than I itself, this is accomplished by
using Hensel lifting as sketched above. Other algorithms combining
Gröbner basis computations with Hensel lifting are given by Arnold
(2003) and Winkler (1988) which combine Buchberger’s algorithm
with Hensel lifting. These algorithms require the computation of so-
called representation matrices for Gröbner bases which are polynomial
matrices describing how each element in a computed Gröbner basis
relates to the input polynomials. Computing these matrices in addi-
tion to computing a Gröbner basis comprises a significant overhead.
In addition, no complexity analysis for these algorithms is provided
by Arnold (2003) and Winkler (1988). The bivariate case is treated
by Schost and St-Pierre (2023), including a complexity analysis. Be-
sides this, multi-modular techniques (such as the ones developed by
Ebert, 1983; Pauer, 1992) can certainly be used as well. While they
are certainly simpler than the techniques we present, they require the
evaluation of the variables in z at multiple points, each of which is
required to lie outside a certain hypersurface which is probabilistically
assumed. This is in contrast to Hensel lifting techniques which just
require one such evaluation.
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Computation of Whitney Stratifications

As another way to use Gröbner bases of generic fibers, and thus as
potential application of the ideas developed in Chapter 7, we give in
Chapter 8, based on the results given by Helmer and Mohr (2024), an
algorithm to compute a so-called Whitney stratification of a singular
algebraic set. In addition, we give an algorithm to minimize a given
Whitney stratification.
A Whitney stratification provides the basic structure needed to decom-
pose singular algebraic sets into smooth pieces which join together
in a desirable way. This has applications for example in physics, see
Helmer, Papathanasiou, and Tellander (2024).
Let us start by motivating the concept of a Whitney stratification.
For this example we will work over the real numbers R. For a set of
polynomials F ⊂ Q[x], we denote VR(F) := V(F)∩Rn.
Consider now the curve in R2 defined by the parametric polynomial

fz(x,y) = (y− 1)2 − (x− z)(x− 1)2 (1.1)

in variables x,y with parameter z. For z < 1 the real algebraic set
VR(fz) is a (connected) nodal cubic, for z > 1 the real algebraic set
VR(fz) has two connected components and is smooth (i.e. is a real
manifold), and at z = 0 the curve is a cubic cusp, see Figure 1.6.

(a) When z < 1 we obtain
a nodal cubic with one
loop.

(b) When z = 1 we obtain
a cusp cubic.

(c) When z > 1, over the
reals, we get a curve
with two connected
components.

Figure 1.6: Plots of the curve defined by (1.1) for different parameter values
z; the topology of the curve changes at z = 1. While the rightmost
curve is smooth and has two connected components (of different
dimensions) in R2 it is connected and singular, with singularity
at (1, 1), in C2.

To understand what is happening here consider now the algebraic
set X = VR(f) in R3 defined by the same polynomial f(x,y, z) = (y−

1)2 − (x− z)(x− 1)2, plotted in Figure 1.7. The surface X is singular
along the entire line Sing(X) = VR(x− 1,y− 1) and the projection map
π : R3 → R onto the last coordinate, (x,y, z)→ z, restricted to either
the manifold X− VR(x− 1,y− 1) or to the manifold VR(x− 1,y− 1)
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is a submersion, however the behavior of the fibers of π restricted to
X− VR(x− 1,y− 1) depends on whether z is greater than or less than
1, while the behavior of the fibers of the restriction to VR(x− 1,y− 1)

is independent of z.

Figure 1.7: The surface X = V
(
(y− 1)2 − (x− z)(x− 1)2

)
in R3. Its singular

locus is Y = V(x− 1,y− 1) and its Whitney stratification arises
from the flag {(1, 1, 1)} ⊂ Y ⊂ X. The dimension 2 stratum is
X− Y, the two dimension 1 strata are the connected components
of Y − {(1, 1, 1)}, and the dimension 0 stratum is (1, 1, 1).

Whitney’s Condition (B) fails for the pair of manifolds X−V(x− 1,y−

1) and V(x − 1,y − 1) at the singular point (1, 1, 1), this condition
(B), given in terms of limits of tangent directions at singular points,
captures the fact that the point (1, 1, 1) is “more singular” in X than the
rest of the singular locus. As it turns out, this in particular allows us
to know exactly when the topology of the fibers of the map π change.
More precisely a classical result known as Thom’s Isotopy Lemma (see e.g.
Proposition 11.1 in Mather, 2012) allows us to partition the codomain
of (proper) maps into regions of constant topology; Whitney’s condi-
tion is a critical component of this construction as illustrated by the
example above.
The algorithm to compute a Whitney stratification we present in
Chapter 8 is not based on a new geometric insight on the concept
of Whitney stratifications but rather utilizes an algebraic criterion to
check Whitney’s condition (B) given in Helmer and Nanda (2023). This
criterion uses primary decomposition of polynomial ideals. A primary
decomposition is essentially an ideal-theoretic analogue of irreducible
decompositions of algebraic sets, which keeps track of additional
embedded and multiplicity structure encoded in I which is lost when
looking only at V(I).
In Helmer and Nanda (2023) this criterion was applied by directly
computing a primary decomposition of some involved ideals, using
Gröbner basis computations, in order to obtain an algorithm com-
puting a Whitney stratification. We show in Chapter 8 that the same
criterion may be applied by computing a single Gröbner basis of a
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generic fiber, thus avoiding a potentially difficult primary decomposi-
tion.
This modification is critical: The computation of a Whitney stratifica-
tion of a given algebraic set X using the above mentioned algebraic
criterion is done by computing with ideals associated to the so-called
conormal space, encoding hyperplanes which contain the tangent spaces
of X. These ideals can be complicated (i.e. have many primary compo-
nents of high degree) even when X itself is relatively simple:

Example 1.0.4. Consider the algebraic set X := V(x61 + x62 + x41x3x4 +

x33) ⊂ A4 defined over Q. The singular locus of X is just the line
V(x1, x2, x3). The fiber of the singular locus in the conormal space
of X is a non-radical ideal in twice as many variables as X with one
primary component of degree 11, one of degree 3 and seven of degree
1.

We note that, to apply this algebraic criterion, it is essential to have
access also to the embedded structure given by a primary decomposi-
tion. This requires an ideal-theoretic perspective, “purely geometric”
techniques such as geometric resolutions or triangular sets do not
suffice.
The algorithm we present to compute a Whitney stratification may
produce more superflous algebraic sets compared to the algorithm
presented by Helmer and Nanda (2023). Motivated by this, it is cou-
pled in Chapter 8 with an algorithm to minimize a given Whitney
stratification, based on a multiplicity criterion by Teissier (1982).

Software

Let us briefly remark on the software that has been written for the
purpose of this thesis. All contributions in this thesis consist of the
design of algorithms and are accompanied by software implemen-
tations, written in Julia, with the exception of the implementation
accompanying Chapter 8, which was written by Martin Helmer in
Macaulay2. Links to these software implementations can be found in
the “Benchmarks” section of each chapter.
We want to highlight in particular the Julia-package AlgebraicSolving.jl,
designed originally as a msolve-wrapper for Julia. This package, pub-
licly available in the Julia package repositories, contains an imple-
mentation of the author of a signature-based Gröbner basis algorithm,
using fast linear algebra, some new ideas by Lairez (2024) and stan-
dard techniques for optimizing Gröbner basis computations, see e.g.
Monagan and Pearce (2015), as well as an implementation of the algo-
rithm presented in Chapter 6 which makes use of the aforementioned
signature-based Gröbner basis algorithm.
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outline of preliminaries

Let us close this introduction by briefly outling the preliminaries of
this thesis, i.e. Part i.
Chapter 2 focuses mostly on the needed results from commutative
algebra and algebraic geometry to design and show correctness of the
algorithms in Chapter 4, Chapter 5 and Chapter 6. We also recall the
properties of generic fibers of ideals with regard to the decomposition
of algebraic sets and ideals in Section 2.4 and briefly introduce the
concept of Whitney stratifications in Section 2.5.
Chapter 3 gives an introduction to the concept and computation
of Gröbner bases. We recall one of the most classical algorithm to
compute them, i.e. Buchberger’s algorithm (Section 3.3) as well as the
F4 algorithm (Section 3.4) and FGLM (Section 3.5). A particular focus
is given towards signature-based algorithms in Section 3.6. In addition
we introduce decomposition algorithms based on Gröbner bases of
generic fibers in Section 3.2.1 and Section 3.2.2.



Part I

P R E L I M I N A R I E S





2
P R E R E Q U I S I T E S F R O M C O M M U TAT I V E A L G E B R A
A N D A L G E B R A I C G E O M E T RY

Throughout this chapter, we denote by R := K[x1, . . . , xn] a polynomial
ring in n variables over a field K. We will often use the shorthand
notation x := {x1, . . . , xn}. For an ideal I ⊂ R we will denote the radical
of I as √

I :=
{
f ∈ R

∣∣ fk ∈ I for some k ∈N
}

.

Fixing an algebraic closure K of K, we denote by An the space K
n

equipped with the Zariski topology, whose closed sets are precisely
the algebraic sets defined below.
For any set S ⊂ R we denote

V(S) := {p ∈An | f(p) = 0 ∀f ∈ S} .

Definition 2.0.1 (Algebraic Set). We call a set of the form V(S) an
algebraic set in An.

Note that V(S) = V(⟨S⟩) = V(
√
⟨S⟩) for any set S ⊂ R.

Conversely, for any set T ⊂An we denote by I(T) the radical ideal

I(T) := {f ∈ R | f(p) = 0 ∀p ∈ T } .

The closure of a set T ⊂ An in the Zariski topology is denoted T .
Recall that T = V(I(T)) by the Nullstellensatz, see e.g. Theorem 1.6 in
Eisenbud (1995). Throughout this thesis all considered algebraic sets
are assumed to be defined over K. This means that for every algebraic
set X appearing in this thesis we suppose that I(X) can be generated
by polynomials lying in R.
The biggest part of this thesis is devoted to the presentation of algo-
rithms which either compute, or can be used for the computation of,
various decompositions of algebraic sets, i.e. the task is to write a given
algebraic set as a union of other algebraic sets. This chapter gives
the necessary preliminaries from commutative algebra and algebraic
geometry for these algorithms.
All material in this chapter can be found in standard textbooks on
commutative algebra and algebraic geometry. We refer to Greuel and
Pfister (2007) and Cox, Little, and O’Shea (2015) for textbooks taking
a computational perspective, the first more from the perspective of
commutative algebra and the latter more from the perspective of
algebraic geometry.
Standard theoretical references of commutative algebra include Eisen-
bud (1995), Matsumura (1987) and Atiyah and MacDonald (1994). The
first gives a more extensive account of the subject while the latter two
focus mostly on the essentials of the subject.
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2.1 decomposition of algebraic sets and polynomial ide-
als

The theoretical underpinning of our decomposition algorithms is
the well known decomposition of an algebraic set into irreducible
components which we recall here.

Definition 2.1.1 (Prime Ideals, Irreducibility). An ideal I ⊂ R is called
prime if for f,g ∈ R with fg ∈ I we have f ∈ I or g ∈ I. An algebraic
set X ⊂ An is called irreducible if I(X) is a prime ideal. Equivalently,
again by the Nullstellensatz, X cannot be written as a union of two
proper algebraic subsets defined over K.

Now we have the well-known

Theorem 2.1.1 (Theorem 2 in Chapter 6 of Cox, Little, and O’Shea,
2015). Any algebraic set X ⊂An can be written as a finite union

X =

r⋃
i=1

Xi

with each Xi irreducible. This decomposition is unique up to reordering the
Xi. We call each Xi an irreducible component of X and write Irred(X) :=
{X1, . . . ,Xr}. Equivalently, by the Nullstellensatz, every radical ideal I ⊂ R

can be written, uniquely up to order, as an intersection

I =

r⋂
i=1

Pi

where each of the Pi is a prime ideal. The prime ideals Pi are the prime ideals
minimal with the property that they contain I and are called the minimal
primes over I and are denoted MinAss(I).
The operation I(•) establishes a one-to-one correspondence between the irre-
ducible components of X and the minimal primes over I(X) and the operation
V(•) establishes a one-to-one correspondence between the minimal primes
over I and the irreducible components of V(I).

By the dimension of an algebraic set or a polynomial ideal we always
mean its Krull dimension, following e.g. Chapter 8 in Eisenbud (1995):

Definition 2.1.2 (Krull Dimension). For a prime ideal I ⊂ R we define
the Krull dimension of I, denoted dim(I), as the length of any maximal
chain of prime ideals in R/I. For an algebraic set X ⊂ An we define
dim(X) := dim(I(X)). By the codimension of an algebraic set X (or a
polynomial ideal I) we mean n− dim(X) (or n− dim(I)).

Most of our algorithms try to decompose a given algebraic set into
equidimensional algebraic sets:

Definition 2.1.3 (Equidimensionality). An algebraic set in An is called
equidimensional if all of its irreducible components have the same
dimension.
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Remark 2.1.1. Note that, while primeness of ideals is not preserved
under field extensions of K, equidimensionality of the corresponding
algebraic sets is, essentially because dimension is preserved under
integral extensions of rings by “Lying Over” and “Going Up”, see e.g.
Proposition 4.15 in Eisenbud (1995).

From a purely ideal-theoretic viewpoint, a notion closely correspond-
ing to an irreducible algebraic set is that of a primary ideal:

Definition 2.1.4 (Primary Ideal). An ideal Q ⊂ R is called primary if
for f,g ∈ R with fg ∈ Q we have f ∈ Q, g ∈ Q or f,g ∈

√
Q.

Definition 2.1.5 (Associated Prime). A prime ideal P ⊂ R is called an
associated prime of an ideal I if there exists f ∈ R/I with

annI(f) := {g ∈ R | gf = 0 mod I} = P.

The set of all associated primes is denoted Ass(I).

Just as an algebraic set can be decomposed into irreducible com-
ponents, any polynomial ideal can be decomposed (possibly non-
uniquely) into primary components:

Theorem 2.1.2 (Theorem 3.10 in Eisenbud, 1995). For any ideal I ⊂ R the
set Ass(I) is finite and we have MinAss(I) ⊆ Ass(I). For every P ∈ Ass(I)
there exists a primary ideal QP with

√
QP = P and

I =
⋂

P∈Ass(I)

QP.

The choice of QP is unique if P ∈MinAss(I). Such a decomposition of I is
called a primary decomposition of I. The primes in Ass(I) \ MinAss(I)
are called the embedded primes of I.

In line with Definition 2.1.3, we say that

Definition 2.1.6. An ideal I ⊂ R is equidimensional if all of its associated
primes have the same dimension.

2.2 colon ideals , saturation ideals and locally closed

sets

In our algorithms we will more often work with locally closed sets
instead of algebraic sets:

Definition 2.2.1 (Locally Closed Set). A set X ⊂ An is called locally
closed if it can be written in the form X = Y \Z with Y and Z algebraic.

By the irreducible components of a locally closed set X we mean the
set {

Y ∩X
∣∣ Y ∈ Irred(X)

}
.

We say that X is equidimensional if X is.
Ideal-theoretically, locally closed sets are closely linked to colon and
saturation ideals:
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Definition 2.2.2 (Colon and Saturation Ideal). For two ideals I, J ⊂ R

we define the colon ideal of I by J as

(I : J) := {f ∈ R | fJ ⊂ I}

and the saturation of I by J as

(I : J∞) :=
{
f ∈ R

∣∣ fJk ⊂ I for some k ∈N \ {0}
}

.

For a single element f ∈ R we write (I : f) and (I : f∞) for (I : ⟨f⟩) and
(I : ⟨f⟩∞) respectively.

Remark 2.2.1. Throughout this thesis we will frequently write

(I+ J : K∞) or (I+ J : K)

for ideals I, J,K ⊂ R. This is always understood to refer to the ideals
((I+ J) : K∞) or ((I+ J) : K).

First, one concludes from the definitions of colon and saturation ideals
that

Proposition 2.2.1. For three ideals I, J,K ⊂ R we have

(I∩ J : K) = (I : K)∩ (J : K)

and
(I∩ J : K∞) = (I : K∞)∩ (J : K∞)

From this, and the definition of a primary ideal one now concludes

Proposition 2.2.2. Let I, J ⊂ R be two ideals and let I =
⋂s

i=1Qi be a
primary decomposition. Then

(I : J∞) =
⋂

J̸⊂
√
Qi

Qi

is a primary decomposition of (I : J∞).

This proposition will be used repeatedly in Section 2.3. It also implies,
using the correspondence between minimal primes over an ideal and
the irreducible components of the corresponding algebraic set given
in Theorem 2.1.1

Proposition 2.2.3. For any two ideals I and J we have

V(I) \ V(J) = V((I : J∞)).

Remark 2.2.2. Geometrically, Proposition 2.2.2 now translates to

Irred(V(I) \ V(J)) = {Y ∩V(I) \ V(J) | Y ∈ Irred(V(I)), Y ̸⊂ V(J)} .

In particular, the irreducible components of V(I) \ V(f) for some f ∈ R

correspond to those components of V(I) on which f is not identically
zero.
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In Chapter 4 we will use the following

Proposition 2.2.4. Let I, J ⊂ R be two ideals. If I is radical then (I : J) =

(I : J∞).

Proof. Using Proposition 2.2.1, we may suppose that I is a prime ideal.
Let p ∈ (I : J∞), i.e. pJk in I for some k ∈ N. Then either p ∈ I (and
so p ∈ (I : J)) or p /∈ I and so Jk ⊂ I which implies J ⊂ I. This then
implies 1 = (I : J) ⊆ (I : J∞) ⊆ 1, establishing the proposition.

In Chapter 5, we will work with locally closed sets by looking at their
intersection with an appropriate linear space. This is based on the
following

Lemma 2.2.1. Let X be an equidimensional locally closed set of dimension d

and let f ∈ R. For a generic linear linear subspace L ⊂An of codimensional
d we have

f ∈ I(X) ⇔ f ∈ I(X∩ L)

Proof. We always have I(X) ⊆ I(X ∩ L). Conversely, assume that f /∈
I(X). Let U := {p ∈ X | f(p) ̸= 0}. U is a Zariski-open subset of X and it
is not empty, by hypothesis. Since X is equidimensional, the Zariski
closure of U has dimension d and the intersection U∩ L is nonempty
(because L is generic). Therefore f is nonzero on a nonempty subset
of X∩ L. In particular, f /∈ I(X).

2.2.1 Further Properties of Colon and Saturation Ideals

Here, we gather various further properties of colon and saturation
ideals that will be used in later chapters.

Proposition 2.2.5. Let I, J be two ideals in R. Then

(I : (I : J∞)∞) = (I : (I : J∞)) .

Proof. By Proposition 2.2.1 we may suppose that I is a primary ideal.
In this case

(I : J∞) =

1 if J ⊂
√
I

I otherwise.

and the statement follows.

In the following we write I
rad
= J for two ideals I, J ⊂ R if

√
I =
√
J. We

record the following variant of the prime avoidance lemma:

Proposition 2.2.6. Let P1, . . . ,Ps ⊂ R be a collection of prime ideals and
let g1, . . . ,gu ∈ R s.t. ⟨g1, . . . ,gu⟩ ̸⊂ Pi for any i. Then there exists a
non-empty Zariski-open subset D ⊂Au such that

(a1, . . . ,au) ∈ D⇒
u∑

j=1

ajgj ̸∈ Pi ∀i.
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Proof. Let V be the K-span of g1, . . . ,gr and let Wi be the K-vector
space Wi := V ∩ Pi. If V = Wi for some i then ⟨g1, . . . ,gr⟩ ⊂ Pi, a
contradiction. Therefore Wi is properly contained in V . The union of
all Wis corresponds to a Zariski closed subset of Ar, which is proper,
since K is infinite. This proves the statement. See also the solution of
Exercise 3.19 on p. 717 of Eisenbud (1995).

Lemma 2.2.2. Let I, J ⊆ R be two ideals with J = ⟨g1, . . . ,gu⟩.

(1) If S = R[t1, . . . , tu] then (I : J∞) =
(
IS : (

∑u
j=1 tjgj)

∞)
∩ R.

(2) There exists a Zarisiki-open subset D ⊂Au such that

(a1, . . . ,au) ∈ D⇒ (I : J∞) =

I : (

u∑
j=1

ajgj)
∞
 .

(3) If Krad
= J then (I : K∞)

rad
= (I : J∞).

Proof. Proof of (1): The left-to-right inclusion follows from the defi-
nition of saturation ideals. For the right-to-left inclusion note that
S/IS ∼= R/I[t1, . . . , tu]. Therefore, if h ∈

(
IS : (

∑u
j=1 tjgj)

∞)
∩ R then,

by expanding h(
∑u

j=1 tjgj)
k for suitable k, we find a polynomial

p ∈ R[t1, . . . , tu] which is zero in R/I[t1, . . . , tu]. This can only happen
if h ∈ (I : J∞).
Proof of (2): The ideal (I : J∞) is the intersection of those primary
components of I whose radical does not contain J (Proposition 2.2.2).
Now we may appeal to Proposition 2.2.6: There is a Zariski-open subset
D ⊂ Au such that for any (a1, . . . ,au) ∈ D we have that

∑u
i=1 aigi

is not contained in any of the associated primes of I which do not
contain J. Then the statement follows again from Proposition 2.2.2.
Proof of (3): If p ∈ R such that pkJl ⊂ I for k, l ∈ N then for a
suitably large m ∈ N we have Km ⊆ Jl so pkKm ⊂ I and hence
p ∈

√
(I : K∞).

Lemma 2.2.3. Let I, J ⊆ R be two ideals and let J = ⟨g1, . . . ,gt⟩. Then

(I : J)
rad
= (I : g1)∩ (I+ ⟨g1⟩ : g2)∩ · · · ∩ (I+ ⟨g1, . . . ,gt−1⟩ : gt) .

Proof. The inclusion ”⊆” is obvious. Now, let p ∈ R be such that

pm ∈ (I : g1)∩ (I+ ⟨g1⟩ : g2)∩ · · · ∩ (I+ ⟨g1, . . . ,gt−1⟩ : gt) .

for some m ∈N. Then we have in particular pmg1 ∈ I. Now let i > 1.
By induction, if for some k ∈N we have pkgj ∈ I for all j ⩽ i then

pkmgi+1 = pkf+ pka1g1 + · · ·+ pkaigi ∈ I

for a suitable f ∈ I, a1, . . . ,ai ∈ R and so pkm ∈ (I : gi+1). We deduce
that a power of p actually lies in (I : J) which ends the proof.
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2.3 regular intersection & regular sequences

A large part of our algorithms is based on the notion of regular inter-
section and regular sequences which we treat here.
We first recall the concept of localization of a ring S and an S-module
M:

Definition 2.3.1 (Localization). Let S be any ring and let C ⊂ S be
multiplicatively closed, i.e. the product of two elements in C lies again
in C. The localization of S at C, denoted loc(S,C), is the ring consisting
of the formal fractions s/c, s ∈ S, c ∈ C with addition, multiplication
and equality defined as for Q.
The localization of M at C is the loc(S,C)-module consisting of the
formal fractions a/c with a ∈M, c ∈ C with addition, multiplication
by scalars and equality defined just as for loc(S,C).

For any ring S, and S-module M, any f ∈ S and any prime ideal P ⊂ S

we use the following notation:

Sf := loc(S,
{
fk

∣∣ k ∈N
}
)

Mf := loc(M,
{
fk

∣∣ k ∈N
}
)

SP := loc(S,S \ P)

MP := loc(M,S \ P)

If we use a point p ∈ An as a localization index in the following,
we mean the localization at the maximal ideal I(p) considered in the
appropriate ring.

Definition 2.3.2 (Regular Intersection, Regular Sequences). Let X ⊂
An be a locally closed set and let f ∈ R. We say that f intersects X

regularly at a point p ∈ X if f is not a zero divisor in Rp/I(X)p. It
intersects X regularly if it is not a zero divisor in R/I(X). A sequence
f1, . . . , fc in R is called a regular sequence or complete intersection if fi
intersects V(f1, . . . , fi−1) regularly for every i = 2, . . . , c.

Regular intersection can be described ideal-theoretically as follows:

Lemma 2.3.1. Let I be any ideal in R and let f ∈ R. Then f does not
regularly intersect V(I) if and only if there exists a minimal prime P over
I such that f ∈ P. In particular, in this situation, by Proposition 2.2.2, we
have I ⊊ (I : f∞).

Proof. If P1, . . . ,Ps are the minimal primes over I then we can write√
I = I(V(I)) =

⋂s
i=1 Pi. Suppose that f is contained in none of the

Pi and that g ∈ (I : f∞). Then, by the definition of a prime ideal, we
have g ∈ Pi for all i and so g ∈

√
I. Hence f regularly intersects V(I), a

contradiction. Conversely, if f is contained in one of the Pi but not all
of them then we may choose any g ∈

⋂
j̸=i Pj ̸=

√
I and then gf ∈

√
I

which shows that f does not regularly intersect X.
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Recall that the minimal primes over I correspond to the irreducible
components of V(I). Now we want to point out how regular intersec-
tion relates to equidimensionality:

Proposition 2.3.1. Suppose X ⊂An is an equidimensional locally closed
set of codimension c and suppose some f ∈ R intersects X regularly. Then X∩
V(f) is either empty or equidimensional of codimension c+ 1. In particular,
any regular sequence of length c defines an equidimensional algebraic set of
codimension c.

Proof. By Krull’s principal ideal theorem (e.g. Theorem 2.10 in Eisen-
bud (1995)), any irreducible component of X∩V(f) has has codimen-
sion at most c+ 1. Suppose that Y = V(P) is an irreducible component
of X of codimension c. Then P is a minimal prime over I(X) and
f ∈ P which implies that f is a zero divisor in S by Lemma 2.3.1, a
contradiction.

We further need

Lemma 2.3.2. Let X be an equidimensional locally closed set of dimension d.
For a generic degree one polynomial ℓ ∈ R, X∩V(ℓ) is equidimensional of
dimension dim(X) − 1.

Proof. We may assume that X is irreducible. Then we need to prove
that for a generic choice of ℓ, X is not contained in V(ℓ) or in other
words that ℓ is not contained in P := IX. But this follows from Proposi-
tion 2.2.6 applied to the set {1}∪ x.

Given a locally closed set X and f ∈ R we now want to describe the set
of points p ∈ X at which f regularly intersects X. For this, suppose that
f is a zero divisor in R/I(X), i.e. that there exists g ∈ R \ I(X) such that
gf ∈ I(X). If now, f intersects X regularly at some point p ∈ X then a
necessary condition is certainly that g ∈ I(X)p. If we now replace X by
the locally closed set

Y := X \
[
X \ V(g)

]
then g vanishes at every point of Y and f will be “more regular” over
Y than over X. We may summarize this paragraph in the following

Proposition 2.3.2. Suppose X ⊂ An is a locally closed set and let f ∈ R.
Let J := (I(X) : f). Let

reg(X, f) := {p ∈ X | f regularly intersects X at p} .

Then
reg(X, f) = X \

[
X \ V(J)

]
.

Proof. First note that

X \ V(f) =
{
p ∈ X

∣∣ f /∈ I(X)p
}

.
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Indeed, by Theorem 3.1 in Eisenbud (1995)

MinAss(Ip) = {Pp | P ∈MinAss(I),p ∈ V(P)}

and the statement follows from Proposition 2.2.2. Hence we have

X \ V(J) = {p ∈ X | f ∈ I(X)p} .

Now let p ∈ X such that f is a zero divisor modulo I(X)p. Then there
is an irreducible component Y of X with p ∈ Y such that f ∈ I(Y),
again by Proposition 2.2.2. Hence p ∈ X \ V(J). This proves the desired
statement.

Example 2.3.1. To give a simple example, let R := Q[x,y, z], X = V(xy)

and f = xz. Note that xy, xz defines a regular sequence at a point
p ∈ X exactly when x is a unit in Rp. Correspondingly we find with
J := (I(X) : f) = ⟨y⟩

X \ [X \ V(J)] = X \X \ V(y) = X \ V(x).

Note that the definition of a regular sequence depends on the ordering
of the sequence elements. Using this definition forces our algorithms
that use it to process the equations of our input one-by-one. As an
alternative we will use the following theorem by Vasconcelos (1967):

Theorem 2.3.1. Let f1, . . . , fc ∈ R, I := ⟨f1, . . . , fr⟩ and h ∈ R. Then
f1, . . . , fc is a regular sequence at every point p ∈ V(I) \ V(h) if and only if
(I/I2)h is a free (R/I)h-module, with basis given by the images of f1, . . . , fc
in I/I2.

Example 2.3.2. Again let R := Q[x,y, z] and consider the sequence
xy, xz in R. Then, in I/I2, we have the relation

z · xy− y · xz = 0

but neither y nor z lie in I so that xy, xz does not form a local regular
sequence.

2.4 generic fibers of polynomial ideals

One concept that can be used for the decomposition of a polynomial
ideal I ⊂ R or the algebraic set V(I) ⊂An is that of a generic fiber of I,
which we introduce here. Recall that we write R = K[x] where x is a
finite set of variables.

Definition 2.4.1 (Independent Subsets). Let I ⊂ R be a polynomial
ideal.

(1) An independent subset of I is a subset y ⊂ x such that I∩K[y] = 0.
It is a maximally independent subset (MIS) if it is an independent
subset of I of maximal cardinality.
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(2) For any MIS y of I we call

gen(I, y) := IK(y)[x \ y]

a generic fiber of I. Here K(y) denotes the field of rational frac-
tions in y with coefficients in K.

First we have

Proposition 2.4.1 (see e.g. p. 4 in Decker, Greuel, and Pfister, 1999).
Any MIS of a polynomial ideal I ⊂ R has cardinality equal to dim(I).

Let us now point out how generic fibers relate to ideal decomposition.
Generic fibers of an ideal I can be used to isolate components of
dimension equal to dim(I):

Proposition 2.4.2. Let I ⊂ R be a polynomial ideal with generic fiber
gen(I, y) for some subset y ⊂ x. Define J := gen(I, y)∩ R. Then

Ass(J) = {PK(y)[x \ y] | P ∈ Ass(I) and P ∩K[y] = 0} .

In particular J is equidimensional of dimension equal to dim(I).

Proof. For the first claim in the proposition, note that K(y)[x \ y] is the
localization of R at the multiplicatively closed set K[y] \ {0}. Now we
may appeal to the behaviour of associated primes under localization
see e.g. Theorem 3.10 in Eisenbud (1995). Note that if P is a minimal
prime over I with P ∩K[y] = 0 then Proposition 2.4.1 implies that
dim(P) ⩾ dim(I). But then dim(P) ⩽ dim(I), since P is minimal over
I, proving the proposition.

Later we will give two algorithms to compute Gröbner bases (see
Chapter 3) of generic fibers based on Hensel lifting ideas.

2.5 whitney stratifications of singular varieties

Now, throughout this section fix K = Q and R := K[x] with x :=

{x1, . . . , xn}. Note that now An = Cn equipped with the Zariski
topology. Let us recall

Definition 2.5.1 (Jacobian Matrix, Singular Locus). Suppose X := V(F)

is equidimensional where F = (f1, . . . , fr) ⊂ R defines a radical ideal
and that codim(X) = c. The Jacobian matrix of F is defined as

JF(x) :=


∂x1

f1 . . . ∂xnf1
...

...

∂x1
fr . . . ∂xnfr


Denote by M the set of c× c-minors of JF. The singular locus of X is
defined as

Sing(X) := X∩V(M).
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If Sing(X) ̸= ∅ then X will be called singular, otherwise smooth. The
tangent space of X at a point p ∈ X \ Sing(X) is defined as the dim(X)-
dimensional vector space

TpX = ker(JF(x)).

Smooth varieties are in particular manifolds and so inherit their local
(euclidean) topology from that of Cn. We introduce here briefly the
concept of Whitney stratifications which is a certain well-behaved way
of partitioning a given singular X into smooth pieces. In Chapter 8 we
give an algorithm to compute such Whitney stratifications, which in
line with the rest of this thesis, uses techniques for equidimensional
decomposition, in particular based on the concept of generic fibers.
We denote by Pk the projective space of dimension k over C and
by Gr(k,n) (Grassmannian) the projective algebraic set whose points
correspond to vector spaces of dimension k in Cn. Note that for every
p ∈ X \ Sing(X), TpX defines a point in Gr(dim(X),n).
We start with

Definition 2.5.2 (Whitney’s Condition (B)). Let X, Y ⊂An be smooth
with dim(Y) < dim(X). The pair satisfies Whitney’s condition (B) if for
any p ∈ Y

• and any sequences (xi) ⊂ X and (yi) ⊂ Y converging to p,

• if the secant lines ℓi = [xi,yi] ∈ Pn−1 converge to some ℓ ∈
Pn−1,

• and if the tangent spaces Txi
X ∈ Gr(dim(X),n) converge to some

T ∈ Gr(dim(X),X),

then ℓ ⊂ T .

Example 2.5.1. Consider the Whitney umbrella X := V(x2 − y2z) ⊂
R3. The singular locus of X is the z-axis V(x, z), the vertical line in
Figure 2.1. Whitney’s condition is not satisfied at the origin (0, 0, 0):
If we choose a sequence (xi) in X \ V(x, z) converging to the origin
then we obtain the limiting tangent plane V(z). However, choosing
another sequence (yi) ∈ V(y, z) approaching the origin from below,
the limiting secant line of the sequence ([xi,yi]) is the line V(x,y)
which is not contained in the limiting tangent plane.

This now allows to formally define a Whitney stratification of an
algebraic set X ⊂An:

Definition 2.5.3 (Whitney Stratification). A Whitney stratification of an
algebraic set X ⊂An is a flag

∅ = W−1 ⊂W0 ⊂ · · · ⊂Wk−1 ⊂Wk = X

where each difference Mi := Wi \Wi−1 is a smooth locally closed set.
The connected (in the euclidean topology on Cn) components of each
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Figure 2.1: The Whitney umbrella V(x2 − y2z). plotted by the computer
algebra system SageMath.

Mi are called strata and each pair of strata must satisfy Whitney’s con-
dition (B). A Whitney stratification is called minimal if, after removing
any stratum, the resulting flag fails to be a Whitney stratification.

Remark 2.5.1. The existence and uniqueness of a minimal Whitney
stratification is established in Teissier (1982).

Example 2.5.2. In Example 2.5.1, Whitney’s condition (B) for X and
V(x, z) is only violated at the origin. Correspondingly, a Whitney
stratification is given by

V(x,y, z) ⊂ V(x, z) ⊂ X = V(x2 − y2z)

In Helmer and Nanda (2023) an algebraic criterion based on primary
decomposition of polynomial ideals is given that allows to check
computationally if a given pair X, Y ⊂An satisfies condition (B), and
as such, to compute a Whitney stratification of a given variety by
successively computing singular loci and then checking condition
(B) for all pairs of resuling varieties. The contribution in Chapter 8

consists in still applying the same criterion but avoiding the potentially
difficult problem of primary decomposition.
In order to introduce the aforementioned algebraic criterion we have
to start with

Definition 2.5.4 (Conormal Space). Denote by (Pn−1)∗ the set of
all linear functionals on Cn modulo scalar multiplication. This is
naturally a projective space of dimension n− 1. The conormal space
Con(X) ⊂ An × (Pn−1)∗ of an algebraic set X ⊂ An is the Zariski
closure of the set

{(p, ζ) | p ∈ X \ Sing(X) and TpX ⊂ ζ} .

The canonical projection κX : Con(X)→ X is called the conormal map.
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Now we can give the aforementioned algebraic criterion. This criterion
itself is based on the statement in Remark 4.2 in Flores and Teissier
(2017).

Theorem 2.5.1 (Theorem 4.3 in Helmer and Nanda, 2023). Let X be an
algebraic set, let ∅ ≠ Y ⊂ Sing(X) be equidimensional and let IY be any ideal
with V(IY) = Y. Let

IY + I(Con(X)) =
⋂
i∈I

Qi

be a primary decomposition. Let

J := {i ∈ I | dim(κX(V(Qi))) < dim(Y)} .

Further, let

A :=

⋃
j∈J

κX(V(Qi))

∪ Sing(Y)

Then the pair (X \ Sing(X), Y \A) satisfies Whitney’s condition (B).

Our algorithm for Whitney stratifications will in general produce a
“less minimal” Whitney stratification than the algorithm by Helmer
and Nanda (2023). For this reason, we will also give an algorithm to
minimize a given Whitney stratification. This algorithm is based on
an equivalent characterization of Whitney’s condition (B) based on
certain local multiplicities, given by Teissier (1982).
We define

Definition 2.5.5 (Local Polar Variety). Let X ⊂An be an equidimen-
sional algebraic set of dimension d. For fixed i with 1 ⩽ i ⩽ d− 1,
consider a dimension d+ i− 1 linear space in An through a given
point p ∈ X with dual Li ⊂ (Pn−1)∗.
A codimension i local polar variety through p is the algebraic set

δi(X,p) := κX(Con(X)∩ Li).

If our linear space Li is chosen sufficiently generic, then, using a
dimension count, some of the local polar varities δi(X,p) will contain
p and some will not (see Remark 3.1 in Flores and Teissier, 2017). We
will want to compute the multiplicity of points p in local polar varieties
δi(X,p). Let us define the notion of multiplicity used here.

Definition 2.5.6 (Length). Let S be any ring and let M be a S-module.
The length of M is the supremum of the lengths of chains of the form

M0 ⊊ M1 ⊊ · · · ⊊ Mn

with Mi submodules of M.
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Definition 2.5.7 (Hilbert-Samuel Function, Multiplicity). Let S be a
local ring with maximal ideal m of Krull dimension d. The Hilbert-
Samuel function of S is defined as

HS(t) := length(S/mt), t ∈N.

There exists N ∈N and a polynomial HP(t) whose leading coefficient
is divisible by d! s.t. HS(t) = HP(t) for t ⩾ N. The multiplicity of S is
defined as the leading coefficient of HP(t) divided by d!.
Let X ⊂ An be an equidimensional algebraic set of dimension d

and let p ∈ An. The multiplicity of X at p, denoted mp(X), is the
multiplicity of the local ring (C[x]/I(X))p.

We refer to Chapter 12 in Eisenbud (1995) for general results about
Hilbert-Samuel functions, in particular for the existence of a polyno-
mial HP(t) as in Definition 2.5.7.
One may now characterize Whitney’s condition (B) in terms of the
multiplicites of local polar varieties at their defining points as follows,
this theorem will be the basis of our minimization algorithm:

Theorem 2.5.2 (see p. 69 and Proposition 3.6 in Flores and Teissier,
2017). Let X be an equidimensional algebraic set, let Y ⊂ X be an algebraic
subset and let p ∈ Y. Then the sequence

m•(X,p) := (mp(X),mp(δ1(X,p)), . . . ,mp(δdim(X)−1(X,p)))

is independent of the linear subspaces chosen to construct the local polar
varieties if they are sufficiently general.
In addition, Whitney’s condition (B) is satisfied at p for X and Y if and
only if the sequence takes the same value for every q ∈ X in a euclidean
neighborhood of p in Y.
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G R Ö B N E R B A S E S O F P O LY N O M I A L I D E A L S

Again we fix for this chapter a polynomial ring R := K[x] over a field
K in a finite set of variables x := {x1, . . . , xn}. We denote by Mon(x)
the set of monomials in the variables x. The key computational tool for
the algorithms in Part ii is the notion of a Gröbner basis of a polynomial
ideal I ⊂ R. Gröbner bases can be used to make various ideal-theoretic
operations in R computable. We give here a self-contained introduction
to their properties and computation.
For a comprehensive treatment of the subject of Gröbner bases we refer
to Becker and Weispfenning (1993), containing in particular a chapter
on algorithms for computing radicals and primary decompositions of
polynomial ideals. The essentials of the subject can again be found in
Cox, Little, and O’Shea (2015) and Greuel and Pfister (2007). While we
do introduce the properties of Gröbner bases we need, our focus in
this chapter lies more on explaining various algorithms for computing
Gröbner bases that will be needed in the following chapters.

3.1 basic definitions & concepts

The basic idea behind Gröbner bases is to provide a generating set G
for a polynomial ideal I for which a multivariate version of polynomial
long division yields a membership test for I: Given f ∈ R this polynomial
long division w.r.t. G should return zero if and only if f ∈ I. It turns
out that this property is not satisfied for any generating set of I, this
furnishes the need for Gröbner bases.
To perform multivariate polynomial long division we need a way to
order the terms of a given polynomial. This ordering is given by a
monomial order:

Definition 3.1.1 (Monomial Order). A monomial order ≺ on Mon(x) is
a total order on Mon(x) which

1. extends the partial order on Mon(x) given by divisibility and

2. is compatible with multiplication i.e. we have

u ≺ v ⇒ wu ≺ wv ∀u, v,w ∈Mon(x).

When the context is clear, we will just speak of a monomial order
without specifying the set of monomials it is defined on. We introduce
immediately three important monomial orders:

Definition 3.1.2 (Degree Reverse Lexicographic Order). The degree
reverse lexicographic order on Mon(x) is defined as follows for u, v ∈

39



40 gröbner bases of polynomial ideals

Mon(x): u ≺drl v iff degu < deg v or degu = deg v and the last
nonzero exponent of u/v is positive.

Definition 3.1.3 (Lexicographic Order). The lexicographic order on
Mon(x) is defined as follows for u, v ∈ Mon(x): u ≺lex v iff the first
nonzero exponent of u/v is negative.

Definition 3.1.4 (Block Order). Let x and z be two finite sets of vari-
ables. Write each monomial u ∈ Mon(x ∪ z) uniquely as a product
u = uxuz with ux ∈Mon(x) and uz ∈Mon(z). Fix a monomial order
≺x on Mon(x) and a monomial order ≺z on Mon(z). The correspond-
ing block order eliminating x is defined as follows: u ≺ v iff ux ≺x vx or
ux = vx and uz ≺z vz for u, v ∈Mon(x∪ z).

A monomial order on x yields a notion of leading monomial in R:

Definition 3.1.5 (Leading Monomial, Coefficient and Term). Let ≺ be
a monomial order on Mon(x).

(1) For a nonzero element f ∈ R the leading monomial of f w.r.t. ≺,
denoted lm≺(f), is the ≺-largest monomial in the support of f.
If f = a lm≺(f) + g for some a ∈ K and g ∈ R with lm≺(g) ≺
lm≺(f), then we define leading coefficient of f w.r.t. ≺ as lc≺(f) :=
a. The leading term is lt≺(f) := lc≺(f) lm≺(f).

(2) For a finite set F in R we define lm≺(F) := {lm≺(f) | f ∈ F \ {0}}.
For an ideal I in R we define the leading monomial ideal of I as
lm≺(I) := ⟨lm≺(f) | f ∈ I \ {0}⟩.

Once we have a monomial order we can give a multivariate version of
polynomial long division:

Algorithm 1 Multivariate polynomial long division

Input: A finite set G, a monomial order ≺, an element f ∈ R \ {0}

Output: An element r such that f = r mod ⟨G⟩ and such that lm≺(r)

is not divisible by any lm≺(g), g ∈ G.
1: procedure Reduce(f, G, ≺)
2: r← f

3: while r ̸= 0 and there exists g ∈ G and u ∈ Mon(x) with
lm≺(r) = lm≺(ug)

4: r← r−
lc≺(r)
lc≺(g)ug

5: return r

Fixing a monomial order gives normal forms for images of elements in
quotient rings of R:

Definition 3.1.6 (Staircase, Normal Form). Let I be an ideal in R and
let ≺ be a monomial order Mon(x).
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1. The set SI,≺ := {u ∈Mon(x) | u /∈ lm≺(I)} is called the staircase
of I w.r.t. ≺. It naturally forms a K-vector space basis of the
quotient ring R/I.

2. The image of every element f ∈ R in R/I can be uniquely writ-
ten as a K-linear combination of elements in SI,≺. This linear
combination of elements in SI,≺ is called the normal form of f

w.r.t. I and ≺ and denoted NF≺(f, I). The corresponding vector
of coefficients of this linear combination, with the elements in
SI,≺ ordered by ≺, will be denoted cI,≺(f).

Note that, w.r.t. any monomial order ≺, we have NF≺(f, I) = 0 iff
f ∈ I.
We finally define the notion of Gröbner bases.

Definition 3.1.7 (Gröbner Basis). A Gröbner basis of an ideal I ⊂ R w.r.t.
a monomial order ≺ is a finite set G ⊂ I such that ⟨lm≺(G)⟩ = lm≺(I).
It is called minimal if the leading monomial of any g ∈ G is not
divisible by any leading monomial of G \ {g}. It is called reduced if
no monomial of any g ∈ G is divisible by any leading monomial of
G \ {g}.

For any monomial order ≺ and any ideal I ⊂ R, there is a unique
reduced ≺-Gröbner basis of I.
The desired ideal membership test is now given by

Lemma 3.1.1. If G is a Gröbner basis for a monomial order ≺, then
Reduce(f,G,≺) = NF≺(f, ⟨G⟩) for any f ∈ R.

Proof. Because ⟨lm≺(G)⟩ = lm≺(I), the result of Reduce(f,g,≺) cer-
tainly is a linear combination of the elements in SI,≺. This proves the
statement.

One of the most important properties, with numerous applications, of
Gröbner basis is the elimination property:

Theorem 3.1.1 (Theorem 2 in Chapter 3 of Cox, Little, and O’Shea,
2015). Let I ⊂ K[x, z] where x and z are two finite sets of variables. Let
≺ be a block order eliminating x and let G be a ≺-Gröbner basis of I. Then
G∩K[z] is a Gröbner basis of I∩K[z] w.r.t. ≺ restricted to Mon(z).

For us, we will mainly use this theorem to compute saturation ideals
(Definition 2.2.2) via Rabinowitsch’s trick:

Lemma 3.1.2. Let I ⊂ R be an ideal and f ∈ R. Introduce a new variable t
and let J := I+ ⟨tf− 1⟩ ⊂ R[t]. Then

J∩ R = (I : f∞) .

Proof. Let us first show that IRf ∩ R = (I : f∞). Suppose g ∈ IRf ∩ R.
Then we can write g = p/fk for suitable k ∈ N and p ∈ I. Hence
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gfk ∈ I and so g ∈ (I : f∞). Suppose on the other hand that g ∈ (I : f∞)

so that there exists k ∈N with gfk ∈ I. Then, in Rf, we have

g =
gfk

fk
∈ IRf

proving the claim. To prove the lemma, note finally that

Rf
∼= R[t]/⟨tf− 1⟩.

3.2 gröbner bases of generic fibers and algebraic set

decomposition

As an application of Gröbner basis we give here a brief overview of
how Gröbner bases of generic fibers (Definition 2.4.1) of polynomial
ideals can be used for the purpose of decomposing algebraic sets and
polynomial ideals. This serves as a motivation for Chapter 7, in which
we will give two algorithms to compute Gröbner bases of generic
fibers and for Chapter 8, where we will present a similar strategy
as demonstrated here to compute so-called Whitney stratifications of
algebraic sets. We refer to Decker, Greuel, and Pfister (1999) for more
details on the contents of this section.

3.2.1 Equidimensional Decomposition

Let I ⊂ R be a polynomial ideal and suppose that we want to compute
an equidimensional decomposition of V(I), i.e. we want to compute a
finite set of ideals D such that for each J ∈ D, V(J) is equidimensional
(see Definition 2.1.3) and such that

V(I) =
⋃
J∈D

V(J).

Suppose now that y ⊂ x is a MIS of I. If we then define

J := gen(I, y)∩ R

then, by Proposition 2.4.2, the irreducible components of J are some
of the irreducible components of I of dimension dim(I), in particular
V(J) is equidimensional.
Let us now discuss how to compute such ideals J. Classically, the
computation is based on the following propositions:

Proposition 3.2.1. (1) Let M ⊂ R be a finite set of monomials. Then a
subset y ⊂ x is a MIS of ⟨M⟩ if and only if there is no monomial in
M that depends only on the variables in y and y is maximal with this
property.
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(2) For any monomial order ≺ and for any ideal I ⊂ R, any MIS of lm≺(I)

is a MIS of I.

Proof. Proof of (1): Suppose y ⊂ x is a MIS of ⟨M⟩ so that ⟨M⟩ ∩
K[y] = 0. If there were a monomial in y contained in ⟨M⟩ then clearly
⟨M⟩ ∩K[y] ̸= 0, a contradiction. On the other hand, suppose that y is
a subset of x such that no monomial in M depends only on y. Note
that M is a Gröbner basis for ⟨M⟩ w.r.t. any monomial order. If we
now assume there exists f ̸= 0 with f ∈ ⟨M⟩ ∩K[y] then one of the
elements of M must divide the leading monomial of f and therefore
lie in K[y], a contradiction.
Proof of (2): If y is a MIS of lm≺(I) and we have f ∈ I∩K[y] with f ̸= 0

then there must exist u ∈ lm≺(I) which divides lm≺(f). Therefore
u ∈ K[y], a contradiction to the fact that y is a MIS of lm≺(I). This
shows that I∩K[y] = 0. Let us now show that y is maximal with this
property. Because y is a MIS of lm≺(I), for any x ∈ x \ y there exists
a monomial u ∈ Mon(y) and k ∈ N s.t. xku ∈ lm≺(I). In particular
xk ∈ lm≺(gen(I, y)), so that gen(I, y) is of dimension zero. Hence
there exists a polynomial

f ∈ gen(I, y)∩K(y)[x].

Multiplying f by a suitable element in K[y], we find an element
p ∈ I∩K[y, x], showing the maximality of y.

This proposition thus gives us the ability to compute MIS of poly-
nomial ideals I: We compute a Gröbner basis of I, w.r.t. some mono-
mial order ≺, and then extract a MIS of lm≺(I) by applying Proposi-
tion 3.2.1. Now we recall

Proposition 3.2.2 (Lemma 4 in Decker, Greuel, and Pfister, 1999). Let
I be an ideal in a polynomial ring K[x, z]. Let ≺ be a block order eliminating
x and let G be a Gröbner basis of I w.r.t. ≺. Then G is also a Gröbner basis of
IK(z)[x].

This proposition gives us one way to compute Gröbner bases of generic
fibers. Next, once we have a Gröbner basis of a generic fiber gen(I, y),
we have to show how to compute generators for the ideal gen(I, y)∩R.
For this we have

Proposition 3.2.3. Let y ⊂ x and let G ⊂ R be any Gröbner basis for a
monomial order ≺ on Mon(x \ y) of an ideal K ⊂ K(y)[x \ y]. Let

h := lcm {lc≺(g) | g ∈ G} .

Then
K∩ R = (⟨G⟩ : h∞) .

Now we are ready to give an equidimensional decomposition algo-
rithm, see Algorithm 5 in Decker, Greuel, and Pfister (1999) for proofs
of correctness and termination:
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Algorithm 2 Equidimensional Decomposition Using Generic Fibers

Input: A finite sequence of polynomials F ⊂ R

Output: A set of Gröbner bases s.t. the corresponding ideals define
an equidimensional decomposition of V(F)

1: procedure GenFibEqui(F)
2: Determine a MIS y of ⟨F⟩ Proposition 3.2.1
3: ≺← any monomial order
4: G← a ≺-Gröbner basis in R of gen(⟨F⟩, y) Chapter 7
5: h← lcm {lc≺(g) | g ∈ G}

6: H← a Gröbner basis of (⟨F⟩ : h∞) Lemma 3.1.2
7: if reduce(h,G,≺) = 0 for all h ∈ H

8: return {H}

9: else
10: return {H}∪GenFibEqui(F∪ {h})

3.2.2 Irreducible Decomposition

Similar ideas as in the last subsection can be used to find the irre-
ducible components of V(I) for a given polynomial ideal I, we infor-
mally sketch this method here. A similar strategy works to compute a
primary decomposition of I, we refer again to Sections 8.6 and 8.7 in
Becker and Weispfenning (1993) for further details.
For now let us assume that I is zero-dimensional, i.e. that V(I) is a
finite set. Now let x := {x1, . . . , xn}. We define

Definition 3.2.1 (Shape position). Let gI be the unique, monic genera-
tor of I∩K[xn]. The ideal I is said to be in shape position if there exist
g1, . . . ,gn−1 ∈ K[xn] s.t.

I = ⟨gI, x1 − g1, . . . , xn−1 − gn−1⟩.

Note that the polynomial gI defined as above can be computed using
any block order eliminating x1, . . . , xn−1. Once this polynomial is
computed we have

Proposition 3.2.4 (Proposition 8.69 in Becker and Weispfenning, 1993).
Suppose I is zero-dimensional and

√
I is in shape position. Let gI be as in

Definition 3.2.1. Suppose that gI has K-irreducible factorization

gI =

s∏
i=1

fki

i

with the fi pairwise distinct. Then an irreducible decomposition of V(I) is
given by

V(I) =

s⋃
i=1

V(I+ ⟨fi⟩).
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Supposing that we can factor polynomials over K into irreducible fac-
tors, this proposition immediately furnishes an algorithm to compute
the irreducible components of V(I) if

√
I is in shape position. The

question remains what to do if
√
I is not in shape position. Proba-

bilistically, we can put any zero-dimensional radical ideal in shape
position by introducing an extra variable:

Proposition 3.2.5 (Lemma 8.72 in Becker and Weispfenning, 1993). Let
I be zero-dimensional. There exists a Zariski-open subset U of An such that
for any c := (c1, . . . , cn) ∈ U the radical of the ideal

Ic := I+ ⟨z− c1x1 − c2x2 − · · ·− cnxn⟩ ⊂ K[x, z]

is in shape position.

Supposing that we have a c as in this proposition we can compute the
irreducible components of V(Ic) and compute their projection to the
original affine space using a block order eliminating z.
Hence we have the ability to probabilistically compute irreducible de-
compositions of arbitrary zero-dimensional ideals. Note that it can be
checked whether Ic is in shape position, thus the resulting algorithm is
Las Vegas, see again Sections 8.6 and 8.7 in Becker and Weispfenning
(1993) for further details. Finally, again using Proposition 2.4.2, we
can compute irreducible decompositions of arbitrary algebraic sets by
applying zero-dimensional irreducible decomposition to their generic
fibers.

3.3 buchberger’s algorithm

The obvious question is now how to compute a Gröbner basis for a
given polynomial ideal ⟨f1, . . . , fr⟩ ⊂ R w.r.t. some monomial order
≺. Historically, the first algorithm to compute Gröbner bases is given
by Buchberger’s algorithm, see Buchberger (1965). The closely related
concept of standard bases was developed by Hironaka (1964). The
algorithm by Buchberger is based on Buchberger’s criterion which gives
a criterion for a given set G ⊂ R to be a Gröbner basis by checking the
result of Reduce(•,G,≺) for finitely many polynomials, called S-pairs:

Definition 3.3.1 (S-Pair). Let f,g ∈ R be two polynomials and ≺ be a
monomial order. Let u = lm≺(f), v = lm≺(g) The S-pair between f,g
(w.r.t. ≺) is given by

sp≺(f,g) =
lcm(u, v)

lt≺(f)
f−

lcm(u, v)
lt≺(g)

g.

Now we have:

Theorem 3.3.1 (Buchberger’s Criterion, e.g. Theorem 5.48 in Becker
and Weispfenning, 1993). Let G ⊂ R be a finite set and ≺ be a monomial
order. Then G is a ≺-Gröbner basis if and only if

Reduce(sp≺(f,g),G,≺) = 0
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for all f,g ∈ G with f ̸= g.

This immediately furnishes

Algorithm 3 Buchberger’s Algorithm

Input: A finite set {f1, . . . , fr} ⊂ R, a monomial order ≺
Output: A ≺-Gröbner basis of ⟨F⟩

1: G← {f1, . . . , fr}
2: P ←

{
sp≺(fi, fj)

∣∣ 1 ⩽ i < j ⩽ r
}

3: while P ̸= ∅
4: Select some p ∈ P, P ← P \ {p}

5: r← Reduce(f,G,≺)
6: if r ̸= 0

7: P ← P ∪
{

sp≺(p,g)
∣∣ g ∈ G

}
8: G← G∪ {p}
9: return G

Note that termination of this algorithm follows from the Noetherianity
of R: After Line 8, the ideal ⟨lm≺(G)⟩ has gotten larger. The correctness
follows from Buchberger’s criterion, Theorem 3.3.1.
There are two practical questions that this algorithm yields: First,
which S-pair should be selected in Line 4? Second, any S-pair which
reduces to zero in Line 5 does not contribute to the output. How can
such S-pairs be detected in advance? In the next section, Section 3.4,
we present the F4 algorithm, given by Faugère (1999), which circum-
vents the selection issue by selecting a large number of S-pairs at
once. In Section 3.6.1 we introduce signature-based Gröbner basis algo-
rithms, initialized by the F5 algorithm given by Faugère (2002), which
introduce criteria to detect S-pairs reducing to zero in Buchberger’s
algorithm in advance, i.e. before reduction is performed.

3.4 the f4 algorithm

The F4 algorithm given by Faugère (2002) builds upon the framework
of Buchberger’s algorithm. The modification made to Buchberger’s al-
gorithm is the following: Instead of selecting and reducing one S-pair
at a time we select several S-pairs at once and organize them, together
with all of their reducers in a matrix. The rows of this matrix will
correspond to certain polynomials. This matrix is then echelonized
and the rows whose leftmost entry has changed during the echelo-
nization then correspond to polynomials which need to be added to
our eventual output. In Section 7.4 we will show how to adapt the F4

algorithm to compute Gröbner bases of generic fibers.
Let us start by defining the kind of matrix we will be building in the
F4 algorithm:
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Definition 3.4.1 (Macaulay Matrix). For any f ∈ R denote by supp(f) ⊂
Mon(x) the support of f. Now, let F = (f1, . . . , fr) be a finite set of
polynomials in R and let ≺ be a monomial order. The Macaulay matrix
MF,≺ determined by F and ≺ is the matrix with the ith row indexed
by fi and the columns indexed in descending order (w.r.t. ≺) by the
monomials

⋃r
i=1 supp(fi). The entry in the row indexed by fi and the

column indexed by u ∈ Mon(x) is c ∈ K where we write uniquely
f = cu+ g with u /∈ supp(g).

For a nonzero row r of a matrix M, let us refer to its leftmost nonzero
entry by pivot(r). Now we can give the F4 algorithm and elaborate on
its various parts:

Algorithm 4 The F4 Algorithm

Input: A finite set {f1, . . . , fr} ⊂ R, a monomial order ≺
Output: A ≺-Gröbner basis of ⟨F⟩

1: G← {f1, . . . , fr}
2: P ←

{
(ufi, vfj)

∣∣ i < j, sp≺(fi, fj) = ufi − vfj
}

3: while P ̸= ∅
4: S← Select(P)

5: S← SymbolicPreprocessing(S,G,≺)
6: M←MS,≺
7: M ′ ← Echelonize(M)

8: for every row r ′ of M ′

9: r← the corresponding row of M
10: if r ′ ̸= 0 and pivot(r ′) ̸= pivot(r)
11: p← the polynomial corresponding to r ′

12: P ← P ∪
{
(up, vg)

∣∣ g ∈ G, sp≺(p,g) = up− vg
}

13: G← G∪ {p}
14: return G

Compared to Buchberger’s algorithm we store the two constitual
components of each S-pair in the set P instead of storing the S-pairs
directly. In Line 4, we then select several (i.e. more than one) pairs
out of P. For each selected pair (p,q) out of P, we store p and q in
the set S and remove (p,q) from P. We have freedom in which S-pairs
we want to select, a typical choice is to select all S-pairs of minimal
degree in P.
Then, in Line 5, we look for a reducer in G for each monomial ap-
pearing in one of the elements in S with the exception of the leading
monomials: By the definition of S-pairs each leading monomial al-
ready appears at least twice in S, so they will reduce during the
echelonization step. In pseudocode this looks as follows:
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Algorithm 5 Symbolic Preprocessing for the F4 Algorithm

Input: A finite set of polynomials S, a finite set of polynomials G, a
monomial order ≺

Output: A finite set of polynomials T

1: procedure SymbolicPreprocessing(S,G,≺)
2: U←

⋃
s∈S supp(s) \ {lm≺(s)}

3: T ← S

4: while U ̸= ∅
5: u← some element in U, U← U \ {u}

6: if there exists g ∈ G, v ∈Mon(x) with lm≺(vg) = u

7: T ← T ∪ {vg}
8: U← U∪ supp(vg) \ lm≺(vg)

9: return T

Finally, in line Line 7, we echelonize the Macaulay matrix built out of
the set S. Here, we are not allowed to swap columns, they need to be
kept ordered by ≺. This echelonization has the effect of reducing all
previously selected S-pairs in one single linear algebra computation.
This is the key point where F4 gains efficiency over Buchberger’s algo-
rithm also because the Macaulay matrices built by F4 have a particular
structure that can be utilized for efficient echelonization. This is done,
for example, by the Gröbner basis library msolve (Berthomieu, Eder,
and Safey El Din, 2021).
For proofs of correctness and termination of Algorithm 4 and Algo-
rithm 5 we refer again to Faugère (1999).

3.4.1 Gröbner Tracers

Gröbner tracers were designed in Traverso (1989) for the purpose of
efficient multi-modular Gröbner basis computation over the rational
numbers. While originally designed to be used in conjunction with
Buchberger’s algorithm (Algorithm 3), we present them here briefly
and somewhat informally as an extension of the F4 algorithm. This
is because in Section 7.4 we will adapt a similar idea to a modular
lifting strategy combined with F4 to compute Gröbner bases of generic
fibers. These Gröbner tracers, as presented in Traverso (1989), can also
be easily combined with signature-based Gröbner basis algorithms, see
Section 3.6 below for an introduction to these algorithms. The basic
observation of multi-modular Gröbner basis computation over the
rational numbers is the following

Theorem 3.4.1 (e.g. Arnold, 2003; Ebert, 1983; Pauer, 1992; Traverso,
1989). Let A be an integral domain with field of fractions Q and let F ⊂ A[x]
be a finite sequence of polynomials. Let G be a ≺-Gröbner basis of ⟨F⟩ in Q[x].
There exists an ideal J ⊂ A s.t. for all prime ideals P ⊂ A with J ̸⊂ P (called
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henceforth a good prime for ⟨F⟩ and ≺) we have G ⊂ AP[x] and G mod P

is a ≺-Gröbner basis of the ideal ⟨F⟩AP/PP[x].

Note that if A = Z, then the prime ideals P which do contain a given
ideal J ⊂ A as in Theorem 3.4.1 constitute a finite set.
Moreover, based on this theorem, if we run the F4 algorithm on an
input system F ⊂ Q[x] and get output G then, for all primes p except
finitely many, all coefficients appearing in this computation will lie
in Zp, i.e. the localization of Z at ⟨p⟩. Thus we can repeat the exact
same computational steps over the finite field Fp := Z/pZ to obtain
the Gröbner basis G mod p. Since this works for almost every prime
p, we may now do the following:

(1) Choose a random prime p and run F4 on the system F mod p.

(2) “Remember” the computational steps we performed except the
ones that yielded reductions to zero.

(3) Apply the exact same computational steps modulo other ran-
domly chosen primes p1,p2, . . . .

(4) Recombine the resulting Gröbner bases using the Chinese Re-
mainder Theorem.

Remembering the computational steps of the F4 algorithm in Item (2)
for a given input can now be done using a tracer:

Definition 3.4.2 (Tracer). A tracer T for a system of polynomials
f1, . . . , fr consists of the following data:

(1) A monomial order ≺.

(2) A finite sequence of finite sets of integers I1, . . . , Is

(3) For each Ii and each j ∈ Ii a finite set of monomials Uij.

With this data structure, Item (3) above now takes the following shape:

Algorithm 6 Following a Tracer

Input: A finite sequence of polynomials F ⊂ R, a tracer T for F
Output: A finite sequence of polynomials G ⊂ R

1: G← F

2: ≺← the monomial order underlying T

3: for Ii the integer sequences of T
4: R←

⋃
j∈Ii

{
uG[j]

∣∣ u ∈ Uij,Uij as in Definition 3.4.2
}

5: M← the Macaulay matrix MR,≺
6: M ′ ←echelonization of M
7: Append all rows of M ′ with changed leading terms to G

8: return G

On a computer, we would store the set G in Algorithm 6 as an array.
In Line 4 by G[j] we mean the jth element in such an array.
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Definition 3.4.3 (Good Tracer). A tracer T for F := {f1, . . . , fr} and ≺
is called good if running Algorithm 6 is well-defined (i.e. there are no
out-of-bounds accesses in Line 4) and if its output G is a ≺-Gröbner
basis of ⟨F⟩.

As detailed above, by Theorem 3.4.1, a tracer T extracted out of an F4

run modulo a random prime p will be good when applied modulo
almost all other primes q. During a specific computation, assuming
that p is a good prime, q will be not a good prime if applying T yields
a different leading monomial ideal modulo q than the one obtained
modulo p.

3.5 the fglm algorithm

For practical purposes, Gröbner bases for the lexicographic (LEX)
order (Definition 3.1.3, can be used to solve polynomial systems via
Definition 3.2.1) or block orders (Definition 3.1.4, when we want
to eliminate variables via Theorem 3.1.1) are frequently of interest.
It has been observed, however, that Buchberger’s algorithm and F4

can be badly behaved when giving such an order as input and are,
in general, much better behaved in practice when using the degree
reverse lexicographic (DRL) order (Definition 3.1.2).
This motivates the design of “change-of-order” algorithms: Given a
Gröbner basis of a polynomial ideal I ⊂ R w.r.t. one ordering ≺in (e.g.
DRL), convert it to a Gröbner basis w.r.t. another ordering (e.g. LEX).
If I is zero-dimensional then the FGLM algorithm, originally given
in Faugère, Gianni, Lazard, and Mora (1993), and in particular its
optimized variants under certain genericity assumptions on the ideal
I (see Berthomieu, Neiger, and Safey El Din, 2022; Faugère, Gaudry,
Huot, and Renault, 2014; Faugère and Mou, 2017; Neiger and Schost,
2020) have turned out to be very practical for example as part of the
software library msolve (Berthomieu, Eder, and Safey El Din, 2021)
where these optimized variants of FGLM form a critical component of
the polynomial system solving machinery provided by msolve. Besides
the FGLM algorithm we mention the Gröbner walk algorithm which
performes a change-of-order even when I is positive dimensional, see
Collart, Kalkbrener, and Mall (1997).
We describe here a simplified version of the original FGLM algorithm.
In Chapter 7, we adapt this algorithm, in a certain sense, to the positive-
dimensional setting by computing Gröbner bases of generic fibers of
polynomial ideals, again via a modular lifting strategy.
Recall that an ideal I ⊂ R is zero-dimensional if and only if R/I is
finite-dimensional as a K-vector space. If this is the case, then we can
use normal form computations to perform finite-dimensional linear
algebra in R/I. This lies at the core of the FGLM algorithm which,
given a Gröbner basis of a zero-dimensional ideal I w.r.t. a monomial
order ≺in, obtains a Gröbner basis of I w.r.t. another monomial order
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≺out. The basic idea is that each normal form of an element in R can
be thought of as an element in the finite-dimensional vector space R/I.
A linear dependence between normal forms then corresponds to an
element in I.

Algorithm 7 The FGLM Algorithm

Input: A Gröbner basis H w.r.t. a monomial order ≺in, another mono-
mial order ≺out

Output: The reduced Gröbner basis G of ⟨H⟩ w.r.t. ≺out, the ≺out-
staircase of ⟨H⟩

1: procedure FGLM(H, ≺out)
2: L← ∅, C← ∅, S← ∅, G← ∅
3: while there exists a monomial not in S∪ ⟨L⟩
4: u← the ≺out-minimal such monomial
5: cu ← c⟨H⟩,≺in(u) computed via Reduce(u,H,≺in)

6: if there exist αv ∈ K for each v ∈ S s.t. cu :=
∑

cv∈C αvv

7: L← L∪ {u}
8: G← G∪ {u−

∑
v∈S αvv}

9: else
10: C← C∪ {cu}
11: S← S∪ {u}
12: return G,S

Remark 3.5.1. The FGLM algorithm, as presented in Faugère, Gianni,
Lazard, and Mora (1993), has arithmetic complexity O

(
nD3

)
, where

D is the degree of the input ideal I, i.e. the K-dimension of R/I. This
complexity is achieved by not computing the required normal forms
naively in Line 5 but by using multiplication tensors associated to I

and ≺in instead. In Section 7.3 we will present a similar complexity
analysis for our modular lifting version of FGLM, so we forego it here.

3.6 signature-based gröbner basis computations

Let f1, . . . , fr ∈ R be a sequence in R. Just as in the previous subsec-
tions, our goal here is again to compute a Gröbner basis for the ideal
generated by f1, . . . , fr for a given monomial order ≺ on R. The class of
algorithms we introduce here are called signature-based Gröbner basis
algorithms and modify the basic structure of Buchberger’s algorithm
in so far as they attach an eponymous signature to each polynomial to
be reduced in the course of Buchberger’s algorithm with the goal of
using this data to detect S-pairs that will reduce to zero and do thus
not contribute to the output. These signatures lead to certain structural
properties of signature-based Gröbner basis algorithms which we will
use in Chapter 4 and Chapter 6.
The field of signature-based Gröbner basis algorithms was started
with the F5 algorithm (Faugère, 2002) and extended in many different
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ways. Our exposition in this chapter follows closely the survey paper
given by Eder and Faugère (2017) in which various signature-based
algorithms are introduced and compared via a common framework.
To introduce the ideas behind signature-based algorithms let us start
with a description of Lazard’s algorithm given by Lazard (1983). Suppose
that f1, . . . , fr are homogeneous.

Definition 3.6.1 (Truncated Gröbner Basis). For d ∈N and a monomial
order ≺ a set G is a d-truncated Gröbner basis of I := ⟨f1, . . . , fr⟩ if for
any u ∈ lm≺(I) with deg(u) ⩽ d there exists g ∈ G with lm≺(g) | u.

Lazard’s algorithm now computes a d-truncated Gröbner basis of
⟨f1, . . . , fr⟩ by echelonizing a series of suitable Macaulay matrices. To
this end define

Definition 3.6.2 (Macaulay Matrix in Degree d). The Macaulay matrix
Md in degree d of homogeneous f1, . . . , fr w.r.t. a monomial is the
Macaulay matrix MFd,≺ where

Fd :=

r⋃
i=1

{ufi | u ∈Mon(x), deg(ufi) = d} .

Lazard (1983) now shows that a d-truncated Gröbner basis (w.r.t. some
monomial order) of ⟨f1, . . . , fr⟩ can be computed by echelonizing each
Macaulay matrix M1, . . . ,Md. The polynomials corresponding to the
rows of these matrices then form the desired d-truncated Gröbner
basis.
The basic idea of signature-based Gröbner basis computations is now
best explained in the context of Lazard’s algorithm. Let us illustrate
this idea with the following example, coming from Eder and Faugère
(2017): In F5[x,y, z], let

f1 = y2 + 4yz

f2 = 2x2 + 3xy+ 3z2

f3 = 3x2 + 4xy+ 2y2

and suppose we want to compute a (truncated) Gröbner basis of the
ideal I := ⟨f1, f2, f3⟩ w.r.t. the DRL order using Lazard’s algorithm. We
start by constructing the Macaulay matrix in degree 2:

M2 =

x2 xy y2 xz yz z2 3 4 2 0 0 0 f3
2 3 4 0 0 3 f2
0 0 1 0 4 0 f1

After echolonisation this matrix takes the shape

x2 xy y2 xz yz z2 0 2 0 1 3 3 p3 ⇝ f5 = f3 + f2 + 4f1
2 3 0 0 4 3 p2 ⇝ f4 = f2 + f1
0 0 1 0 4 0 f1
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Hence, a degree 2 truncated Gröbner basis of I is given by {f1, f4, f5}.
Now we make the key modification: Throughout our computation we
“remember” where each new polynomial came from by remembering
the row label of the row from which it was obtained. Such a row label
is of the form ufi, i = 1, 2, 3 for a monomial u.
Let ϵ1, ϵ2, ϵ3 be the standard basis of unit vectors of R3. We have a
map R3 → R, mapping ϵi to fi. Now we label each element obtained
so far by the row label of the row from which it came, replacing fi by
ϵi and store this data in our degree 2 truncated Gröbner basis. Such a
label, of the form uϵi, i = 1, 2, 3, for a monomial u is called a signature.
With this modification, our degree 2 truncated Gröbner basis now
takes the shape

G2 := {(ϵ1, f1), (ϵ2, f4), (ϵ3, f5)}.

To extend G2 into a degree 3 truncated Gröbner basis we would now
build the Macaulay matrix M3 in degree three, whose rows are given
by xfi,yfi, zfi, i = 1, 2, 3, or, in our new terminology, whose rows have
signatures xϵi,yϵi, zϵi, i = 1, 2, 3. The idea behind remembering these
signatures is now the following:

Throughout our computation, if we disallow certain row operations during
echelonization, then the result of reducing the row with signature uϵi

depends only on this signature.

In our example, this means that before doing any reduction, we can
replace the rows in M3 corresponding to xf2,yf2, zf2 with xf4,yf4, zf4
because p2 and p4 have the same signature, and similarly for f5. This
has the effect of putting M3 into a “more reduced” shape before any
arithmetic has been performed. Indeed, the Macaulay matrix M3 with
all rows coming from f1, f2, f3 is given by

M3 =

x3 x2y xy2 y3 x2z xyz y2z xz2 yz2 z3



3 4 2 0 0 0 0 0 0 0 xϵ3
0 3 4 2 0 0 0 0 0 0 yϵ3
0 0 0 0 3 4 2 0 0 0 zϵ3
2 3 4 0 0 0 0 3 0 0 xϵ2
0 2 3 4 0 0 0 0 3 0 yϵ2
0 0 0 0 2 3 4 0 0 3 zϵ2
0 0 1 0 0 4 0 0 0 0 xϵ1
0 0 0 1 0 0 4 0 0 0 yϵ1
0 0 0 0 0 0 1 0 4 0 zϵ1
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After the replacement rule above, replacing xf2,yf2, zf2 by xf4,yf4, zf4,
and similarly for f3 and f5, we get

x3 x2y xy2 y3 x2z xyz y2z xz2 yz2 z3



0 2 0 0 0 1 0 3 0 0 xϵ3
0 0 2 0 0 0 1 0 3 0 yϵ3
0 0 0 0 0 2 0 0 1 3 zϵ3
2 3 0 0 0 4 0 3 0 0 xϵ2
0 2 3 0 0 0 4 0 3 0 yϵ2
0 0 0 0 2 3 0 0 4 3 zϵ2
0 0 1 0 0 4 0 0 0 0 xϵ1
0 0 0 1 0 0 4 0 0 0 yϵ1
0 0 0 0 0 0 1 0 4 0 zϵ1

which is already closer to having echelon form than M3 above!
At the beginning of this section we mentioned that the signatures
also serve to avoid reductions to zero during Gröbner basis compu-
tations. This also is an effect of the replacement rule above. Let us
denote by RR(uϵi, f) the polynomial obtained from reducing the row
corresponding to the polynomial f with signature uϵi. Suppose that
previously some row g with signature vϵi has reduced to zero and
that u = wv for some monomial w. Then, by the replacement rule
above

RR(uϵi, f) = RR(uϵi,wg) = RR(uϵi, RR(vϵi,g)) = RR(uϵi, 0) = 0,

so any row whose signature is divisible by the signature of a row that
has previously reduced to zero can be avoided!

3.6.1 Basic Concepts & Definitions

Let us now give the appropriate technical framework to the idea of
signatures: Let Rr be the free module over R of rank r with standard
basis ϵ1, . . . , ϵr. We define a map Rr → R by R-linear extension of

ϵi 7→ ϵi := fi.

Fix a monomial order ≺ on Mon(x). Abusing notation, we extend it to
a module monomial order ≺ on Rr:

Definition 3.6.3 (Module Monomial Order). A module monomial is a
term of the form uϵi where u ∈ Mon(x). A module monomial order
extending a monomial order ≺ on R is defined analogously to a
monomial order on Mon(x) with the additional constraint that u ≺ v

implies uϵi ≺ vϵi for all u, v ∈Mon(x) and 1 ⩽ i ⩽ r.

Whether we mean a monomial order or a module monomial order
will be clear from the context.
In the context of signature-based algorithms, the typical choices for
module monomial orders are
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Definition 3.6.4 (Position Over Term, Term Over Position, Schreyer
Order). Let ≺ be a monomial order on R and let ϵ1, . . . , ϵr be the
standard basis of unit vectors of Rr.

(1) The position-over-term (POT) order on Rr is defined as uϵi ≺pot

vϵj iff i < j or i = j and u ≺ v.

(2) The term-over-position (TOP) order on Rr is defined as uϵi ≺ vϵj
iff u ≺ v or u = v and i < j.

(3) The Schreyer ordering on Rr is defined as follows: Fix f1, . . . , fr ∈
R. Then uϵi ≺ vϵj iff u lm≺(fi) ≺ v lm≺(fj) or u lm≺(fi) =

v lm≺(fj) and uϵi ≺pot vϵj.

In this thesis, the POT order will be of particular importance hence
we give it its own notation above.

Definition 3.6.5 (Signature). The signature of an element α ∈ Rr,
denoted s(α), is the ≺-leading monomial of α.

Remark 3.6.1. As described at at the beginning of the section, for
the purpose of signature-based Gröbner basis computations, we will
just need the data (s(α),α). This data is enough to implement the
replacement rule from the beginning of this section as long as one
disallows reductions that would change the signature (in the following
indicated by the keyword regular). We work here in the module Rr

to utilize signature-based algorithms for syzygy computations of the
sequence f1, . . . , fr, which we will use in later chapters. For this, the
choice of module monomial order also plays a crucial role.

For two elements α,β ∈ Rr we construct a signature-theoretic analogue
of the S-pairs in Buchberger’s algorithm as follows:

Definition 3.6.6 (S-Pair, Signature Version). The S-pair between α,β ∈
Rr is denoted by sp(α,β) and defined as follows: Let

c := lcm(lm(α,β)

a := c/ lm(α)

b := c/ lm(β).

Then
sp(α,β) := aα− bβ.

This S-pair is called regular if s(aα) ̸= s(bβ) and singular otherwise.

The regular reduction of an element α ∈ Rr with respect to a finite
set G ⊂ Rr of sig-poly pairs is defined to be the output of Algorithm 8.
The procedure tries to reduce the leading term of α using some mul-
tiple bβ of an element β ∈ G such that bs(β) ≺ s(α). The procedure
stops when there is no such reducer. Compared to the usual division
algorithm in polynomial rings, only reductions by lower signature
elements are allowed.
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Algorithm 8 Regular reduction

1: procedure RegularReduction(α, G, ≺)
2: γ← α

3: while R :=
{
(b,β) ∈ R×G

∣∣ b lt(β) = lt(γ),bs(β) ≺ s(γ)
}
̸=

∅
4: (b,β)← some element in R

5: γ← γ− bβ

6: return γ

We may now describe a variant of Buchberger’s algorithm using
signatures and only regular reductions and S-pairs, see Algorithm 9.

Algorithm 9 Buchberger with signatures

Input: f1, . . . , fr ∈ R, a module monomial order ≺
Output: A Gröbner basis of ⟨f1, . . . , fr⟩, a ≺-Gröbner basis of the

syzygy module of f1, . . . , fr.
1: procedure Buchberger(f1, . . . , fr, ≺)
2: G← {ϵi | 1 ⩽ i ⩽ r}

3: S← ∅
4: P ← {(α,β) | α,β ∈ G form a regular S-pair}
5: while P ̸= ∅
6: (α,β)← the pair in P with s(sp(α,β)) minimal w.r.t. ≺
7: P ← P \ {α,β}
8: γ← RegularReduction(sp(α,β), G)
9: if γ ̸= 0

10: G← G∪ {γ}
11: P ← P ∪ {(γ,β) | β ∈ G forms a regular S-pair with γ}

12: else (record a syzygy)
13: S← S∪ {γ}
14: return

{
β
∣∣ β ∈ G

}
,S

Remark 3.6.2. Algorithm 9 computes a Gröbner basis of the syzygy
module of f1, . . . , fr, i.e. of the kernel of the map • : Rr → R. While we
have not formally defined this notion, using the concept of a module
monomial order it is defined exactly as a Gröbner basis of an ideal in
R.

For proofs of correctness and termination we refer to Theorem 5.1 in
Eder and Faugère (2017).

3.6.2 From Buchberger’s Algorithm to sGB-Computations

Now we can put the replacement rule from the beginning of this
section into a formal statement. Recall that the overarching principle
is the following: at most one element in Rr has to be regular-reduced at each
signature. This is made precise by the following statement.
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Lemma 3.6.1 (Lemma 6.2 in Eder and Faugère, 2017). In the course of
Algorithm 9, assume that only S-pairs in signature ⪰ σ are left in P. Let
G be the current intermediate state of the Gröbner basis of I = ⟨f1, . . . , fr⟩
computed by the algorithm at the beginning of its while-loop. Then for any
γ,γ ′ ∈ Rr with s(γ) = s(γ ′) = σ,

RegularReduction(γ,G) = RegularReduction(γ ′,G)

This now furnishes several criteria to get rid of S-pairs in Algorithm 9

without affecting correctness. Before making them precise, define

Definition 3.6.7 (Koszul Syzygy). Let α,β ∈ Rr. The Koszul syzygy
between α and β is defined as

ksyz(α,β) = βα−αβ.

Note that for any α ∈ Rr and any monomial u we have s(uα) = us(α).
Now we can scratch any S-pair sp(α,β) = aα− bβ if either (a,α) or
(b,β) are rewritable:

Definition 3.6.8 (Rewritability). During a run of Algorithm 9 let G
be the current intermediate state at the beginning of the algorithm’s
while-lopp of the output Gröbner basis of ⟨f1, . . . , fr⟩ and let S be the
current intermediate state of the output Gröbner basis of the syzygy
module of f1, . . . , fc. Let u ∈Mon(R) be a monomial and α ∈ G. Then
(u,α) is called rewritable if either one of the following are true:

syzygy criterion There exists σ ∈ S with σ | us(α).

koszul criterion There exists β1,β2 ∈ G with

s(ksyz(β1,β2)) | us(α).

singular criterion There exists β ∈ G added later to G than α

with s(β) | us(α).

Applying these criteria we get
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Algorithm 10 sGB Algorithm with rewrite checks

Input: f1, . . . , fr ∈ R, a module monomial order ≺
Output: A Gröbner basis G of ⟨f1, . . . , fr⟩, a set S such that S ∪

{ksyz(α,β) | α,β ∈ G} is Gröbner basis of the syzygy module of
f1, . . . , fr.

1: procedure sGB(f1, . . . , fr, ≺)
2: G← {ϵi | 1 ⩽ i ⩽ r}

3: S← ∅
4: P ← {(α,β) | α,β ∈ G form a regular S-pair}
5: while P ̸= ∅
6: (α,β)← the pair in P with s(sp(α,β)) minimal w.r.t. ≺
7: P ← P \ {α,β}
8: a,b← the monomials s.t. sp(α,β) = aα− bβ

9: if (a,α) and (b,β) are not rewritable w.r.t. G and S

10: γ← RegularReduction(sp(α,β), G)
11: if γ ̸= 0

12: G← G∪ {γ}
13: P ← P∪ {(γ,β) | β ∈ G forms a regular S-pair with γ}

14: else (record a syzygy)
15: S← S∪ {γ}
16: return

{
β
∣∣ β ∈ G

}
,S

Correctness and termination of this algorithm is given in Theorem 7.1
in Eder and Faugère (2017).

Remark 3.6.3. Morally, in line with the beginning of this section, it is
useful to think of an S-pair uα− bβ with s(bβ) ≺ s(uα) as a row in
Lazard’s algorithm with signature s(uα). Then the singular criterion in
Definition 3.6.8 implements the replacement rule from the beginning
of this section. If some γ ∈ G was added later to G than α and we have
s(uα) = s(wγ) for some monomial γ then we expect wγ to be “easier
to reduce” than uα. The syzygy criterion reflects the fact that we can
scratch any row whose signature is divisible by the signature of a row
that previously reduced to zero. The Koszul criterion is just a special
case of the syzygy criterion but we mention it for later applications
based on Proposition 3.6.1 given below. The question remains why
we are allowed to check bβ for rewritability as well: This is based on
the fact that, if some element uα has a regular reducer in G, then we
can always find a non-rewritable reducer, see Lemma 7.3 in Eder and
Faugère (2017).

Example 3.6.1. To illustrate Algorithm 10 let us illustrate it on the
example given by f1 := x2 and f2 := xy+ y2 in Q[x,y]. We use the
DRL order as our monomial order and the POT order as our module
order. We start by setting

G := {ϵ1, ϵ2}
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at the beginning of the algorithm. The pairset P contains then only the
regular pair

sp(ϵ2, ϵ1) = xϵ2 − yϵ1

which has image −xy2 in R. We then regular reduce this S-pair using
yϵ2 (the leading monomial of the image of which is precisely xy2),
which yields γ := (x+y)ϵ2−yϵ1. We add γ to G and build the S-pairs
with the existing elements in G, i.e. ϵ1 and ϵ2:

sp(γ, e1) = x2γ− y3ϵ1

sp(γ, e2) = xγ− y2ϵ2.

The first S-pair has signature x3ϵ2 and so is rewriteable by the Koszul
criterion, since this signature is divisible by lm(ϵ1) = x2. The second
S-pair has signature x2ϵ2 and so is eliminated by the same rewrite
check. We finally return G and S = ∅, i.e. there are no non-Koszul
syzygies between f1 and f2.

Remark 3.6.4. As already remarked at the beginning of this section,
the data of (s(α),α) suffices to compute a Gröbner basis with Algo-
rithm 10. In this case we of course do not compute a full ≺-Gröbner
basis of the syzygy module of f1, . . . , fr but just the syzygy signatures,
i.e. the leading monomials of such a Gröbner basis which are then
only applied to make use of the Syzygy criterion. In fact, even if
we want to use Algorithm 10 to compute syzygies, tracking the full
module representation of the considered polynomials is computation-
ally impractical. In the chapters where we require more data about
the syzygies, other than just the signatures, we will point out more
efficient ways to compute this data rather than directly tracking the
module representations as in the pseudocode here.

3.6.3 sGB’s and Regular Sequences

We will now point out how sGB computations relate to the computa-
tion of quotient and saturation ideals and regular sequences. We will
use these properties in Chapter 4. Recall that Algorithm 10 depends
on choosing a monomial order on Rr.
Note that Algorithm 10 processes S-pairs by increasing order on Rc.
If this order is the POT order, then the consequence of this is that
Algorithm 10 computes a Gröbner basis for ⟨f1, . . . , fr⟩ incrementally:
First for ⟨f1, f2⟩ then for ⟨f1, f2, f3⟩ and so on. Indeed, all S-pairs with
signature of the form uϵi lie in ⟨f1, . . . , fi⟩ and will be processed
before any S-pair with signature of the form vϵj if i < j.
Further, with this choice of ordering, a byproduct of running Algo-
rithm 10 on f1, . . . , fr is the following: If we let Ii := ⟨f1, . . . , fi⟩, then
the output set S of Algorithm 10 consists of generators of all colon
ideals (Ii−1 : fi) for 2 ⩽ i ⩽ r. More precisely, let πi : R

r → R be the
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projection to the ith coordinate. Further let S be the set of syzygies of
f1, . . . , fr returned by running Algorithm 10 on S. Then

Proposition 3.6.1. Let

Si := {πi(γ) | γ ∈ S, s(γ) = uϵi for some u ∈Mon(x)} .

Then (Ii−1 : fi) = Ii−1 + ⟨Si⟩, Si ∩ Ii−1 = 0 and all elements in Si have
distinct leading monomial not lying in lm(Ii−1). In particular, f1, . . . , fr is
a regular sequence if and only if the output set S of running Algorithm 10
on f1, . . . , fr is empty, i.e. no reduction to zero is computed.

Proof. Fix some i = 2, . . . , r and let γ ∈ S with s(γ) = uϵi. By defini-
tion of the POT order this means that

γ =

i∑
j=1

πj(γ)ϵj

and

0 = γ =

i∑
j=1

πj(γ)fj.

In particular πi(γ) ∈ (Ii−1 : fi). Suppose that u := lm(πi(γ)) ∈
lm(Ii−1), i.e. s(γ) = uϵi. By definition of the POT order, Algorithm 10

has computed a Gröbner basis for Ii−1 before considering any ele-
ment in signature s(γ). Hence there must exist α ∈ G with s(α) = vϵj
and j < i, added to G before γ has been considered, with lm(α) | u.
Consider the Koszul syzygy κ := αϵi − fiα. Then

s(κ) = lm(α)ϵi | uϵi = s(γ),

and so no element in s(γ) is computed by the Koszul criterion, a
contradiction. The property that all elements in Si have distinct leading
monomials is proven by a similar argument using the Syzygy criterion.
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4
C O M P U T I N G T H E N O N D E G E N E R AT E L O C U S

As usual in this thesis, let R := K[x] be a polynomial ring over a field
K in a finite set of variables x. Denote by An the corresponding affine
space over K. Let F := (f1, . . . , fc) ∈ R be a finite sequence in R. We
define

Definition 4.0.1 (Nondegenerate Locus). The nondegenerate locus of a
finite sequence F ⊂ R is defined as

ndeg(F) := {p ∈ V(F) | F is a regular sequence in Rp} .

Our goal in this chapter is to design an algorithm which computes a
Gröbner basis of an ideal K such that V(K) = ndeg(F). This algorithm
will owe its efficiency to the careful exploitation of certain inherent
features of signature-based Gröbner basis algorithms, which were
introduced in Section 3.6.
In Section 4.1 we first give a basic description of our algorithm, without
explicit usage of signature-based techniques. Despite of its geometric
goal we give it purely in terms of ideal-theoretic operations, to make
the connection to signature-based Gröbner basis algorithms easier in
Section 4.2.
The content of this chapter is based on Eder, Lairez, Mohr, and Safey
El Din (2023b).

4.1 the basic algorithm

The computation of the nondegenerate locus of a given sequence
F := (f1, . . . , fc) is based on the following simple observation:

Proposition 4.1.1. Let F ′ := (f1, . . . , fc−1). Then

ndeg(F) = reg(ndeg(F ′), fc).

Proof. This follows immediately from the definition of a regular se-
quence: F defines a regular sequence at a point p ∈ V(F) iff F ′ defines
a regular sequence at p and if fc regularly intersects V(F ′) at p.

Again we denote for two ideals J,K ⊂ R J
rad
=K if

√
J =
√
K.

Recall now from Proposition 2.3.2 that for X := ndeg(F ′) we have
reg(X, f) = X \

[
X \ V(J)

]
where J := (I(X) : f). Being given an ideal I

with V(I) = X we then have to perform the following ideal-theoretic
operations to obtain an ideal K with V(K) = ndeg(F) = reg(X, f):

63
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(1) Compute the ideal
J := (I : f∞) .

Note that Jrad
= (I(X) : f) (Proposition 2.2.2) and therefore V(J) =

X \ V(f).

(2) Compute the ideal

H = (I : J)
Proposition 2.2.5

= (I : J∞) .

Note that Hrad
= I(X\V(J)) (Proposition 2.2.3) and therefore V(H) =

X \ V(J).

(3) For an ideal If with If
rad
= I(X∩V(f)) compute the ideal

K := (If : H
∞) .

Now we have V(K) = reg(X, f). Recall that X is a locally closed
set and may be written as V(I) \ V(N) where N is a suitable
polynomial ideal. An ideal If as above may then be obtained as
(I+ ⟨f⟩ : N∞).

In purely ideal-theoretic terms this now furnishes the following infor-
mal algorithm to compute the nondegenerate locus of F:

Algorithm 11 Computation of the nondegenerate locus

Input: A finite sequence f1, . . . , fc in R where c ⩽ n

Output: An ideal K with K
rad
= I(ndeg(f1, . . . , fc))

1: K← 0, as an ideal of R
2: H← ∅
3: for k from 1 to c

4: J←
(
K : f∞k )

Item (1) above
5: H← H ∪ {(K : J)} Item (2) above
6: K← K+ ⟨fk⟩ Item (3) above
7: for H ∈ H

8: K← (K : H∞) Item (3) above
9: return K

Theorem 4.1.1. Algorithm 11 is correct and terminates.

Proof. The termination of the algorithm is clear. To prove correctness,
assume inductively that Algorithm 11 has correctly computed the
nondegenerate locus of the partial sequence f1, . . . , fk as an ideal K.
Note that this means that

V(K) = V(f1, . . . , fk) \
⋃

H∈H

V(H)

with H in its state before we start the k+ 1st iteration of the for-loop of
Algorithm 11. The claimed correctness follows because Algorithm 11

performs exactly the steps given in Item (1) through Item (3) above.
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Remark 4.1.1. A straightforward implementation of Algorithm 11 can
be given via Gröbner basis computations: To perform the necessary
saturations we can use Lemma 3.1.2 and Lemma 2.2.2. To compute the
colon ideals in Line 5 we can use e.g. Proposition 6.33 in Becker and
Weispfenning (1993).

We will now explain how to instantiate Algorithm 11 into a concrete
algorithm using signature-based computations.

4.2 integration with signature-based gröbner basis com-
putations

In order to instantiate Algorithm 11 efficiently using sGB compu-
tations, we will use the properties laid out in Section 3.6.3, i.e. the
incremental structure coming performing sGB computations using the
POT order (Definition 3.6.4) and their properties laid out in Proposi-
tion 3.6.1.

4.3 the sgb tree datastructure

We first specify a data structure, called sGB tree. It is meant to extend
Algorithm 10 in two ways: by offering the possibility to add new input
equations during the computation; and to then facilitate the saturation
and colon ideal computations needed for Algorithm 11.

4.3.1 Specification

An sGB tree represents a rooted tree T where each node holds an
element of the polynomial ring R. The nodes are partially ordered by
the ancestor-descendant relation: ν ≺T µ if ν is on the unique path
from µ to the root of T (or, equivalently, if µ is in the subtree rooted
at ν). For a node ν, the polynomial contained in ν is denoted ν, and
the ideal generated by the polynomials contained by the ancestors
of ν (not including ν) is denoted I<ν. An sGB tree offers the following
three operations. How we implement them is the matter of the next
section.

node insertion Insert a new node, containing a given polyno-
mial f, anywhere in the tree, as a new leaf or on an existing edge.
Denoted InsertNode(T, f, position).

gröbner basis Given a node ν, outputs a Gröbner basis of the ideal
generated by the polynomials contained in the nodes ⪯T ν.
Denoted Basis(T, ν).

get a syzygy Given a node ν, outputs an element of I<ν : ν. De-
noted GetSyzygy(T, ν).
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If GetSyzygy(T, ν) outputs zero, then I<ν + J = I<ν : ν, where J

is the ideal generated by all previous invocations of GetSyzygy(T,
ν).

GetSyzygy will modify some state of T and we demand that
this causes GetSyzygy(T, ν) to eventually output zero after suffi-
ciently many invocations.

4.3.2 Implementation

An sGB tree T can now be implemented using sGB computations. To
this end, recall that running Algorithm 10 on a sequence f1, . . . , fr of
polynomials performs operations on elements in the free module Rr

while considering the images of these elements in Rr under the map
mapping the ith unit vector to fi. This transports to working with an
sGB tree T as follows: For any node ν consider the ordered sequence
of all µ where µ ⪯T ν. Just as above, we may perform operations
on elements in the free module corresponding to this sequence and
consider their images under the map •, defined as at the beginning of
Section 3.6.1. The unit vectors in such a free module now correspond to
some nodes in T. For a node ν in T we denote by ϵν the corresponding
unit vector.
For an element α in any such defined free module we can now define
the signature s(α) w.r.t. the POT ordering (induced by the order-
ing ≺T). We additionally define the node of α, denoted node(α), via
node(α) := ν if s(α) = uϵν for some monomial u ∈ Mon(x) and a
node ν in T.
Two elements α,β in potentially two different thusly defined free
modules are said to be comparable if node(α) and node(β) are compa-
rable by ≺T (i.e. if node(α) and node(β) lie on the same path in T), in
which case α,β may be considered as part of the same free module
in a canonical manner. We redefine the notion of an S-pair to be built
only between comparable elements.
Now we can adapt Algorithm 10 to implement the sGB tree data
structure, yielding Algorithm 12 below.

Remark 4.3.1. In Algorithm 12, the sets G,P and S are considered as
part of the inherent state of T. They are modified by the different
procedures in Algorithm 12 as side effects. More precisely, we assume
that the inherent state of a sGB tree always results from a sequence of
calls to InsertNode, Basis or GetSyzygy applied to an initially empty
tree.

Proposition 4.3.1. Let T be a sGB tree and let ν be a node of T. Basis(T, ν)
given in Algorithm 12 terminates and outputs a Gröbner basis of the ideal
I⩽ν generated by all µ with µ ⪯T ν.

Proof. This algorithm considers only S-pairs whose signatures are
above a given node ν. After this restriction, the signatures are totally
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Algorithm 12 Implementation of the sGB tree data structure

Input: An sGB tree T and a node ν of T
Output: Process the pair in P with node above ν with smallest signa-

ture
1: procedure ProcessSPair(T, ν)
2: (restrict to S-pairs whose nodes are above ν)
3: P ′ ← {(α,β) | α,β ∈ G, max {node(α), node(β)} ≺T ν}

4: if P ′ ̸= ∅
5: (α,β)← the pair in P ′ with s(sp(α,β)) minimal
6: P ← P \ {(α,β)}
7: a,b← the monomials such that aα− bβ = sp(α,β))
8: if (a,α) and (b,β) are not rewriteable w.r.t. G and S

9: γ← RegularReduction(sp(α,β), G)
10: if (γ) ̸= 0

11: G← G∪ {γ}
12: P ← P∪ {(γ,β) | β ∈ G forms a regular S-pair with γ}

13: else (record a syzygy)
14: S← S∪ {γ}

Input: A sGB tree T and a node ν of T
Output: A Gröbner basis of I<ν

1: procedure Basis(T, ν)
2: while there is a pair in P with node ⪯T ν

3: ProcessSPair(T, ν)
4: return {α | α ∈ G and node(α) ⪯T ν}

Input: A sGB tree T and a node ν of T
Output: An element of the quotient ideal (I<ν : ν) not contained in

I<ν

1: procedure GetSyzygy(T, ν)
2: while there is a pair in P with node ⪯T ν and Sν :=

{πϵν(γ) | γ ∈ S, node(γ) = ν} = ∅
3: ProcessSPair(T, ν)
4: if Sν ̸= ∅
5: pick and remove some h in Sν
6: return h

7: else
8: return 0

Input: A sGB tree T, a polynomial f and a description of the position
of the new node in T

Output: The new node in T

1: procedure InsertNode(T, f, position)
2: insert a node ν with ν = f in T, as described by “position”
3: Sν ← ∅
4: P ← {(ϵν,β) | β ∈ G and (ϵν,β) forms a regular S-pair}
5: G← G∪ {ϵν}
6: return ν
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ordered, so Basis behaves exacly like Algorithm 10. We note that,
contrary to Algorithm 10, Basis may start in a state where several
S-pairs have already been processed, in an unspecified order, by earlier
calls to Basis or GetSyzygy on different nodes. This does not invalidate
either the termination and correctness proof for Algorithm 10 given
in Theorem 7 in Eder and Roune (2013), see also Theorem 7.1 in Eder
and Faugère (2017) and Algorithmic Property 7.1 (c) therein, where
the case of handling S-pairs in any order is explicitly treated.

Proposition 4.3.2. Let T be a sGB tree and let ν be a node of T. Get-
Syzygy(T, ν) (Algorithm 12) terminates and outputs some f ∈ R such
that:

(1) f ∈ (I<ν : ν);

(2) if f ̸= 0, then lm(f) is not divisible by the leading monomial of
any other polynomial previously output by GetSyzygy(T, ν), or any
polynomial in I<ν;

(3) if f = 0, then (I<ν : ν) is generated by I<ν and the polynomials
previously output by GetSyzygy(T, ν).

Proof. Termination follows from the termination of Basis since the
main loop is similar, but with the possibility of earlier termination.
Correctness follows from Proposition 3.6.1 after again restricting to
nodes above ν.

Remark 4.3.2. As pointed out in Remark 3.6.4, it is computationally
infeasible to track full module representations in a sGB computation.
For the purposes of GetSyzygy it suffices to track just the largest
nonzero entry of each module element (i.e. the full entry of which
the signature is the leading monomial): The output returned in Line 5

of GetSyzygy is πϵν(γ) of an element γ with node(γ) = ν. Tracking
just these highest entries turns out to not produce a large overhead in
computations.

4.4 computation of the nondegenerate locus

The sGB tree data structure will now be used to implement an ef-
ficient variant of Algorithm 11 for computing an ideal representing
the nondegenerate locus. We use an sGB tree to efficiently compute
saturations of the form (I : f∞) for an ideal I ⊂ R and f ∈ R, and
also double quotients of the form (I : (I : f∞)), with the idea to exploit
newly discovered relations as soon as possible to simplify further com-
putations. This leads to Algorithm 13, which we describe informally
as follows.
We use the POT ordering in the following but explicitly introduce
the equations f1, . . . , fr one after the other, as Algorithm 10 would do
implicitly in this case, to make the relation to Algorithm 11 clearer.
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We maintain a sGB tree which, at the beginning of the kth iteration,
that is after having processed f1, . . . , fk−1, has the following shape:

g1 ← f1 ← p1 ← · · · ← gk−1 ← fk−1 ← pk−1 ← 0︸︷︷︸
ν

↙ h1

← h2

...

,

where bold letters represent a sequence of zero, one or several nodes.
The tree grows from the node labeled ν, by adding new leaf nodes,
or inserting nodes just above ν. Using the notations of Algorithm 11,
the nodes gi are contained in the saturations by the fi in Line 4, the
leaf nodes hi are generic elements of the ideals in the set H, and the
nodes pi are contained in the saturations (G : K∞) in Line 8. We added
g1 for the consistency of the above picture although it will always be
empty and so f1 is the root of the tree.

Remark 4.4.1 (Deterministic variant). The leaf nodes hi are generic
in the sense that they are linear combinations of generators of the
ideals in H where all coefficients are either random scalars or new
variables. Algorithm 13 chooses either a random scalar or a new
variable in Line 11. For a randomized algorithm, favoring speed over
deterministic correctness, choose t to be a random scalar, this choice
is justified by Lemma 2.2.2. For a deterministic algorithm, choose t

to be a slack variable, unused in the input equation. It is guaranteed
that such a t is generic enough, again by Lemma 2.2.2. In this case the
monomial order on R has to be extended to R[t] by a monomial order
that eliminates t. The implementation discussed in the next section
exclusively chooses t to be a random scalar.

The kth iteration proceeds as follows. Firstly, a new node µ containing
fk is created just above ν:

· · · ← fk︸︷︷︸
µ

← 0︸︷︷︸
ν

← · · · .

As long as GetSyzygy(T, µ) returns nonzero elements (g1,g2, . . . ), we
insert them above µ:

· · · ← g1 ← g2 ← · · · ← fk︸︷︷︸
µ

← 0︸︷︷︸
ν

← · · · .

This saturation has the effect of completing I<µ into
(
I<µ : f∞k )

. Each
time we insert a polynomial gi in a node, say γ, we also record the
syzygies GetSyzygy(T, γ), take a generic linear combination of them
and insert it as a new leaf node. These syzygies come from the double
quotients

(
I<µ :

(
I<µ : f∞k ))

computed in Line 5 of Algorithm 11. Be-
fore going to the next iteration, insert above ν all the syzygies obtained
from the children of ν, this again has the effect of saturating I<ν by the
polynomials contained in these nodes, and performs the ideal-theoretic
operations in Line 8 of Algorithm 11.
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After all the input equations have been processed, the ideal I<ν repre-
sents the closure of the nondegenerate locus of the input, which we
will prove by comparing with Algorithm 11. Before this proof, let us
illustrate Algorithm 13 using a concrete example:

Example 4.4.1. To illustrate Algorithm 13 let us illustrate its behaviour
on the sequence F = (xy, xz) ⊂ Q[x,y, z]. During the first loop starting
in Line 5, the sGB tree T has the shape

xy← 0︸︷︷︸
ν

.

No actual computations happen in this loop because we are just
working with a single element. In the next iteration of the loop, we
insert the second element of the sequence, the sGB tree T has the
shape

xy← xz← 0︸︷︷︸
ν

.

Now, if µ is the node which contains xz, then GetSyzygy(T,µ) returns
g = y. Then, after Line 14, T has the shape

xy← y← xz← 0︸︷︷︸
ν

.

Next, we run through the loop starting in Line 12. If γ is node contain-
ing y then we first find GetSyzygy(T,γ) = x in Line 13. The next call
GetSyzygy(T,γ) already returns zero, so in Line 17 we insert h := x

and T now has the shape

xy← y← xz← 0︸︷︷︸
ν

← x.

Finally, in the loop starting in Line 18, we only find b = z, so after
Line 23, T takes the shape

xy← y← xz← z← 0︸︷︷︸
ν

← x.

Finally we terminate with the basis {xy,y, xz, z}.

Theorem 4.4.1. Algorithm 13 terminates. Algorithm 13 is correct, provided
that one chooses t as a new variable in line 12 or that t is chosen as a scalar
in a suitable Zariski open subset of K.

Proof. Termination follows from the assumption that for any node ν

of a sGB tree T, GetSyzygy(T, ν) eventually returns 0 after sufficiently
many calls.
To prove correctness, we show that Algorithm 13 computes the same
ideal as Algorithm 11. Let Jk−1 be the value of Iν at the beginning of
the kth iteration. After Line 4, we also have I<µ = Jk−1, while I<ν =

I<µ + ⟨fk⟩.
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Algorithm 13 Computation of the nondegenerate locus with an sGB
tree
Input: f1, . . . , fc ∈ R

Output: A Gröbner basis G of an ideal representing nondegenerate
locus of (f1, . . . , fc)

1: T ← an empty sGB tree
2: ν← InsertNode(T, 0)
3: for k from 1 to c

4: µ← InsertNode(T, fk, just above ν)
5: loop
6: g← GetSyzygy(T, µ)
7: if g = 0

8: break
9: γ← InsertNode(T, g, just above µ)

10: h← 0

11: t← a random scalar (or the slack variable, see Remark 4.4.1)

12: loop
13: h ′ ← GetSyzygy(T, γ)
14: if h ′ = 0

15: break
16: h← th+ h ′

17: InsertNode(T, h, as a child of ν)
18: for all child β of ν
19: loop
20: b← GetSyzygy(T, β)
21: if b = 0

22: break
23: InsertNode(T, b, just above ν)

24: return Basis(ν)
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We first examine the loop on Line 5. It inserts above the node µ all
the polynomials obtained from GetSyzygy(T, µ). Every node inserted
on Line 14 is in (I<µ : fk). No other node is inserted above µ. So by
induction, it follows that all along the loop, we have Jk−1 ⊆ I<µ ⊆(
Jk−1 : f∞k )

. Moreover, after the loop terminates, we have (Iµ : fk) =

I<µ, due to the specification of GetSyzygy (Proposition 4.3.2). If now
g ∈

(
Jk−1 : f∞k )

then g ∈
(
Iµ : f∞k )

= I<µ and so all in all it follows
that before Line 18, we have

I<µ = (Jk−1 : f∞k ) and I<ν = (Jk−1 : f∞k ) + ⟨fk⟩. (4.1)

Next, we examine the loop on Line 18 and its inner loop on Line 19.
By the same argument as above, the inner loop has the effect of
saturating I<ν by β. So after the loop on Line 18, we have

I<ν = Jk = ((Jk−1 : f∞k ) + ⟨fk⟩) :
( ∏

β child of ν

β

)∞
. (4.2)

It remains to understand the nature of the children of ν. They all come
from the insertion of h on Line 17. And h is simply a generic linear
combination of the return values of GetSyzygy(T, γ). So h is a generic
linear combination of some h1, . . . ,hr such that I<γ + ⟨h1, . . . ,hr⟩ =
(I<γ : γ) (by Proposition 4.3.2). For each node γ inserted on Line 14,
let Lγ denote the ideal (I<γ : γ). If g1, . . . ,gs are the successive return
values of GetSyzygy(T, µ) on Line 6, and γ1, . . . ,γr the corresponding
nodes, we have L<γi

= (I<γi
: gi) and I<γi

= Jk−1 + ⟨g1, . . . ,gi⟩. By
Lemma 2.2.3, it follows that

Lγ1
∩ · · · ∩ Lγr

rad
= (Jk−1 : ⟨g1, . . . ,gr⟩∞) . (4.3)

Moreover, by Equation (5.4), we obtain that before Line 18

I<µ = Jk−1 + ⟨g1, . . . ,gr⟩ = (Jk−1 : f∞k ) , (4.4)

so, combining with (4.3),

Lγ1
∩ · · · ∩ Lγr

rad
= (J : ⟨g1, . . . ,gr⟩∞) (4.5)

= Jk−1 :
(
Jk−1 + ⟨g1, . . . ,gr⟩

)∞ (4.6)
rad
= (Jk−1 : (Jk−1 : f∞k )) . (4.7)

As remarked above, the loop on Line 19 has the effect of saturating I<ν

by β. By the analysis above, β is actually a generic linear combination
of some h1, . . . ,hr such that I<γ + ⟨h1, . . . ,hr⟩ = Lγ, for some node γ

above ν. By Lemma 2.2.2, saturating by β is the same as saturating
by ⟨h1, . . . ,hr⟩ (assuming that β is sufficiently generically in the case
where Algorithm 13 chooses random scalars in line 12). Besides, I<ν

contains I<γ, so saturating I<ν by ⟨h1, . . . ,hr⟩ is the same as saturat-
ing by Lγ. Back to Equation (4.2), we conclude from Equation (4.7)
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that saturating I<ν by all the β is the same as saturating by all the
ideals

(
Ji−1 :

(
Ji−1 : f∞i ))

, for i ⩽ k.
Therefore Jk satisfies the same recurrence relation

Jk =

(
(Jk−1 : f∞k ) + ⟨fk⟩

)
:

( ⋂
i⩽k

(
Ji−1 : (Ji−1 : f∞i )

))∞
. (4.8)

This proves that Algorithm 13 and Algorithm 11 compute the same
ideal.

Remark 4.4.2. As mentioned in Remark 3.6.4, tracking the full module
representation of each element during a signature-based Gröbner
basis computation is computationally impractical. Note however, that
GetSyzygy just requires the largest non-zero entry of any given syzygy,
not the full syzygy itself. In the context of Algorithm 13, the leading
monomial of this entry, together with its index, gives us the signature
of any given element. So, in an actual implementation, we can just
track the non-zero entry of highest index of any given element, this
turns out to be not a computational burden compared to the actual
polynomial arithmetic in the image of ·.

4.5 benchmarks

The benchmarks for this chapter were recorded using an implemen-
tation of the author of both Algorithm 10 and Algorithm 13 in the
programming language Julia (Bezanson, Edelman, Karpinski, and
Shah, 2017) with an interface to the Julia-package Singular.jl which
itself is an interface to the computer algebra system Singular (Decker,
Greuel, Pfister, and Schönemann, 2022). This implementation is avail-
able at

https://github.com/RafaelDavidMohr/SignatureGB.jl

Since the recording of these benchmarks, the author has written a
newer, more optimized, implementation of Algorithm 10 as part of
the Julia package AlgebraicSolving.jl. The implementation used
for the benchmarks here is not competitive with optimized implemen-
tations of Gröbner basis algorithms such as in the computer algebra
system Maple or msolve. Despite this, the implementation used here
incorporates linear algebra techniques as in the F4 algorithm, follow-
ing Section 13 in Eder and Faugère (2017) and uses certain standard
techniques for optimizing Gröbner basis computations in a concrete
implementation such as monomial hashtables as described by Monagan
and Pearce (2015).
All benchmarks for this chapter were recorded with K = F65521.
We computed all examples on a single Intel Xeon Gold 6244 CPU @
3.60GHz with a limit of 200G memory.
In Table A.1 we compare Algorithm 13 and a straightforward imple-
mentation of ours of Algorithm 11 in Maple on some of the polynomial

https://github.com/RafaelDavidMohr/SignatureGB.jl
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systems listed in Appendix A.1. In this Maple implementation, we satu-
rated an ideal J by an ideal K by picking a random linear combination
p of generators of K and saturating J by p using the internal satura-
tion routine of Maple, this, probabilistically, gives the ideal (J : K∞) by
Lemma 2.2.2.
In Table A.2 we compare Algorithm 13 to other ideal decomposition
methods available in the computer algebra systems Singular, Maple
and Macaulay2 (Grayson and Stillman, n.d.). We refer to Appendix A.2
for an explanation of the symbols used in Table A.2.
In Macaulay2 one is able to compute the intersection of all components
of non-minimal dimension again with the method presented in Eisen-
bud, Huneke, and Vasconcelos (1992). We then saturated the original
ideal by the result to obtain the nondegenerate locus. On a high level,
our algorithm works similarly, incrementally obtaining information
about the component of higher dimension and then removing it via
saturation. One should keep in mind that all of these methods, com-
pared to Algorithm 13, work more generally: Except for what we tried
in Macaulay2 they are all able to obtain a full equidimensional decom-
position of the input ideal or respectively the algebraic set defined by
this input ideal.

4.5.1 Discussion of Experimental Results

Despite the non-optimized nature of the implementation used to create
these benchmarks, Table A.1 shows the improvement of Algorithm 13

over Algorithm 11 independent of implementational considerations:
While the optimized Gröbner basis engine of Maple beats the imple-
mentation of Algorithm 10 mentioned above by a wide margin, the
ratio between the timings of our implementation of Algorithm 10 and
our implementation of Algorithm 13 is much better than the ratio
between the time it took to compute a Gröbner basis in Maple and
our Maple implementation of Algorithm 11. This indicates that the
overhead over a Gröbner basis computation incurred by Algorithm 11

is significantly reduced by bringing in signature-based techniques
as in Algorithm 13. This can be seen by looking at the two respect
“ratio”-columns of Table A.1. To additionally show the overhead of
Algorithm 13 over Algorithm 10 we noted the number of arithmetic
operations in K when running each of the two algorithms on the
polynomial system in question. Our implementation of Algorithm 13

never takes more than 10 times the number of arithmetic operations
Algorithm 10 takes, on certain examples we compare very favorably
in terms of arithmetic operations to Algorithm 10.



5
C O M P U T I N G A N E Q U I D I M E N S I O N A L
D E C O M P O S I T I O N O F A N A L G E B R A I C S E T

We reuse the notation from Chapter 4. Our goal here is to, instead
of computing the nondegenerate locus of a finite sequence F ⊂ R, to
present an algorithm to compute an equidimensional partition of V(F):

Definition 5.0.1 (Equidimensional Partition). An equidimensional par-
tition of a locally closed set X ⊂ An is a finite set of locally closed
sets D such that each Y ∈ D is equidimensional, the elements of D are
pairwise disjoint and such that

X =
⋃
Y∈D

Y.

The content of this chapter is based on Eder, Lairez, Mohr, and Safey
El Din (2023a).

5.1 the basic principle

Following a similar outline as Chapter 4, in this section we describe
the geometric principles of the algorithm presented in this chapter
first without any concern for particular data structures.
We will also use similar principles as in Chapter 4. More precisely, we
will iterate through the equations F = (f1, . . . , fc) one by one, at each
step producing an equidimensional partition of V(f1, . . . , fi) for each
1 ⩽ i ⩽ c. At each incremental step we compute an equidimensional
partition of X∩V(fi) where X is one of the output sets of the previous
step. This computation, in turn, will rely again on the concept of
regular intersection, as in Chapter 4.
To explain this computation suppose now that X ⊂An is an equidi-
mensional locally closed set and that f ∈ R. Thanks to Proposition 2.3.1
we now have the equidimensional partition

X∩V(f) = X \ reg(X, f)⊔ [reg(X, f)∩V(f)] . (5.1)

Example 5.1.1. Let R := Q[x,y, z], let X := V(xy, xz,yz), the union of
the three coordinate lines, and let f := x(x− 1). V(f) contains the two
irreducible components V(x,y) and V(x, z) of X. Note that therefore

reg(X, f) = X \ V(x) = V(y, z)

and
X \ reg(X, f) = V(x, z)∪V(x,y) = V(x,yz).

75
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Figure 5.1: X plotted in blue and V(f) in black using Maple.

We apply Equation (5.1) here, but without computing these two locally
closed sets directly. Suppose that f does not intersect X regularly, i.e.
there exists g ∈ R such that gf ∈ I(X) but g /∈ I(X). Defining

X1 = X \ V(g)

X2 = X \X1

we can write X = X1 ⊔ X2. By Proposition 2.3.2 we now have X2 ⊃
reg(X, f) and therefore also X1 ⊂ X \ reg(X, f) which in particular
implies f ∈ I(X1). Hence

X∩V(f) = X1 ⊔ (X2 ∩V(f)) (5.2)

with X1 equidimensional. Having computed X1 and X2, we can then
start the same procedure again with X replaced by X2, i.e. we look for
g ′ ∈ R such that g ′f ∈ I(X2) but g ′ /∈ I(X2). If no such g ′ exists then f

intersects X2 regularly and Equation (5.2) gives an equidimensional
partition of X∩V(f).
In instantiating this algorithmic idea into an algorithm, with the idea
of possibly inducing a finer decomposition of X, we will force every
locally closed set X we encounter to have the shape X = Y \ V(h)

where Y is Zariski-closed and h ∈ R. Such locally closed sets will
be called affine cells in the following. If, in the notation above, X is
an affine cell then so is X1 = X \ V(g) but we will need to represent
X \X1 as a union of affine cells as well.
This is accomplished as follows: Suppose H ⊂ R is any finite set such
that

⟨H⟩rad
= I(X1).

Take h ∈ H and let H ′ := H \ {h}. Then for any affine cell X

X \ V(H) = [X \ V(h)]⊔
[
(X \ V(H ′))∩V(h)

]
. (5.3)

X \ V(h) is now an affine cell and, applying this formula recursively,
we can decompose X \ V(H) as a disjoint union of affine cells. The
equidimensionality of every output affine cell can therein be insured
by again applying the above equidimensional decomposition idea
when intersecting with V(h) on the right hand side of Equation (5.3).
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5.2 primitive operations & data structures

In the previous section we gave the underlying geometric ideas to
give an equidimensional partition of any algebraically closed set into
special locally closed sets, called affine cells. Here, we specify pre-
cisely which operations we need to be able to perform with any data
structure describing an affine cell to bake the ideas from the previ-
ous sections into precise algorithms. We then give two different data
structures with which all necessary operations can be performed.
First of all, for both data structures, we assume every affine cell X to
be explicitly given in terms of equations f1, . . . , fr and an inequation
h such that X = V(f1, . . . , fr) \ V(h). This equips each affine cell with
the distinguished, not necessarily radical, ideal

IX := (⟨f1, . . . , fr⟩ : h∞)

such that X = V(IX).
The operations that our data structures need to supply are more
precisely the following:

(1) Given f ∈ R, compute a data structure representing the affine
cell X∩ V(f);

(2) Given f ∈ R, compute a data structure representing the affine
cell X \ V(f);

(3) Given f ∈ R, decide if f ∈ IX, or if f ∈
√
IX, both will yield a

correct and terminating algorithm;

(4) Compute a generating set of IX, denoted basis(X).

For our first data structure, we may simply represent an affine cell X
by a pair (G,h), where G is a Gröbner basis of IX, for some monomial
ordering, and h a polynomial such that X = V(G) \ V(h). We de-
note X = V(G;h). For a set G ⊆ R and an element h ∈ R, let sat(G,h)
denote a Gröbner basis of the saturation ideal (⟨G⟩ : h∞) (computed
e.g. via Lemma 3.1.2). The operations above then take the following
shape:

(1) V(G;h)∩ V(f) = V(sat(G∪ {f} ,h);h);

(2) V(G;h) \ V(f) = V(sat(G, f); fh);

(3) f ∈ IX if and only if the normal form of f w.r.t. G is zero;

(4) basis(V(G;h)) = G.

For our second data structure we rely on some randimization. This
randomization relies on intersecting with random linear subspaces of
appropriate dimension to reduce to the zero-dimensional case. This
idea is used in the computation of geometric resolutions under the
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name lifting fiber (Giusti, Lecerf, and Salvy, 2001; Lecerf, 2003) and
numerical algebraic geometry (e.g. Bates, Hauenstein, Sommese, and
Wampler, 2013) wherein these intersections of algebraic sets with
random suitable random linear subspaces are known under the name
witness sets.

Proposition 5.2.1. Let X be an equidimensional affine cell of dimension d

and let f ∈ R. Then, for a generic linear subspace L ⊂An of codimension d

the following statements hold:

(1) f ∈
√
IX if and only if f ∈

√
IX∩L.

(2) IX\V(f) ⊆
√
IX if and only if X∩ L∩V(f) = ∅ where

IX\V(f) = (IX : f∞) .

Proof. The first point follows from Lemma 2.2.1.
For the second point note that IX\V(f) ⊆

√
IX if and only if f intersects

X regularly (Lemma 2.3.1) , that is X ∩V(f) is equidimensional of
dimension d− 1. The intersection of X∩V(f) with the codimension d

generic space L is empty if and only if the dimension of X ∩V(f) is
less than d by Lemma 2.3.2. This proves the second point.

Equipped with Proposition 5.2.1 we can now represent an equidimen-
sional affine cell X with a tuple (F,h,W,d) where F and W are subsets
of R, dim(X) = d and X = V(F) \ V(h). We denote such a tuple by
V(F,h,W,d). Here, W is a Gröbner basis of IX∩L where L is randomly
chosen linear subspace of Kn of codimension d, we call W a witness
set of X. Here, IX∩L is the ideal (IX + J : h∞) where J is given with
V(J) = L. The operation of computing W is denoted witness(F,h,d).
Now the four operations above take the following shape:

(1) [Regular intersection] Given f ∈ R such that X intersects V(f)

regularly,

X∩V(f) = V
(
F ′;h, witness(F ′,h,d− 1),d− 1

)
,

with F ′ = F∪ {f};

(1’) [Purely irregular intersection] Given H ⊂ R such that X∩V(H) is
a union of components of X,

X∩V(H) = V
(
F∪H;h, gb(W ∪H),d

)
,

where gb(W ∪H) denotes a Gröbner basis of the ideal generated
by W ∪H;

(2) for f ∈ R, X \ V(f) = V(F;hf, sat(W, f),d);

(3) f ∈
√
IX if and only if 1 ∈ (W : f∞);
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(4) basis(X) = sat(F,h).

In addition we obtain a fifth operation: a probabilistic algorithm to
check if X∩V(f) is empty or equidimensional of dimension one less
than X (or, equivalently if f intersects X regularly). This is given by
Algorithm 14.

Algorithm 14 Regular intersection check

Input: An equidimensional affine cell X, an element f ∈ R

Output: true if f intersects X regularly, false otherwise
1: procedure isRegular(X, f)
2: W ← the witness set of X
3: W ′ ← gb(W ∪ {f})
4: return 1 ∈W ′

Example 5.2.1. Let again R := Q[x,y, z], X := V(xy, xz,yz) and let
f := x − 1. f intersects X regularly and we have dim(X) = 1. Let
ℓ := x+ 2y+ 4z+ 5, a witness set for X is then given by a Gröbner
basis of the zero-dimensional ideal W := ⟨xy, xz,yz, ℓ⟩. Furthermore,
a Gröbner basis computation in OSCAR reveals that

−

(
1

6
x+ 1

)
f = 1 mod W

so that isRegular(X, f) returns true with this choice of W.

5.3 the algorithms

With the primitives from Section 5.2 we can now bake the ideas from
Section 5.1 into precise pseudocode, see Algorithm 15 below. We again
give the algorithm in purely geometric terms, to allow for the flexibility
of choosing either datastructure for affine cells from Section 5.2. A
slight subtlety is the following: To intersect an affine cell with an
algebraic set using the witness set data structure we need to know
whether we need to perform a regular or purely irregular intersection.
This is always known a priori for Algorithm 15. The intersection on
Line 4 of split (given in Algorithm 15) is regular, the intersection on
Line 8 is purely irregular. The one on Line 9 is a bit more subtle. Indeed,
the decomposition algorithm may produce here a nonequidimensional
cell when considering X∩V(g). With the notations of this algorithm,
the cell X ′ = X ∩V(g) is only equidimensional outside of V(H) (of
dimension dim(X)). This nonequidimensional cell will go through only
one operation among the four primitives: X ′ \ V(h) for some h ∈ H.
This operation restores equidimensionality. So we can ignore this
issue and compute the intersection X ∩V(g) as a purely improper
intersection, pretending that X∩V(g) is equidimensional.
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Note also that with the witness set data structure, we can replace the
if-condition in Line 3 of split with isRegular(X, f). Only if this is not
satisfied do we proceed to compute a Gröbner basis for IX\V(f).

Algorithm 15 Equidimensional partition

Input: An equidimensional affine cell X, an element f ∈ R

Output: A partition of X∩V(f) into equidimensional affine cells
1: procedure Split(X, f)
2: G← basis(X \ V(f))

3: if G ⊆ IX can be replaced by G ⊆
√
IX

4: return {X∩V(f)}

5: else
6: g← any element of G \ IX
7: H← basis(X \ V(g))

8: D← {X∩V(H)}

9: for Y ∈ remove(X∩V(g),H)

10: D← D∪ split(Y, f)

11: return D

Input: An affine cell X, a finite set H ⊂ R with X \ V(H) equidimen-
sional

Output: A partition of X \ V(H) into equidimensional affine cells
1: procedure Remove(X, H)
2: if H = ∅
3: return ∅
4: else
5: h← any element in H

6: D← {X \ V(h)}

7: for Y ∈ remove(X,H \ {h})

8: D← D∪ split(Y,h)

9: return D

Input: A finite set F ⊂ R

Output: An equidimensional partition of V(F) into affine cells
1: procedure Equidim(F)
2: D← {V(∅; 1)} the full affine space
3: for f in F

4: D←
⋃

X∈D split(X, f)

5: return D

Example 5.3.1. To illustrate split we spell out how it behaves on the
input X := V(xy, zw) and f := xz. Using the notation of split we find
G = {y,w} in Line 2. This is not contained in IX, so we may choose
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g := y in Line 6 of split. Then we find H = {x, zw} in Line 7. Note that
X \ V(zw) = ∅ and so split returns

X∩V(H) and split(remove(X,H), f)

= V(zw, x) and split(V(y, zw) \ V(x), xz).

This second call to split finds G = {y,w}, again this set is not contained
in IV(y,zw)\V(x), and so we can choose g := w in Line 6. Then we find
H = {z} which this time yields

split(V(y, zw) \ V(x), xz) =V(y, z) \ V(x)

and split(V(y,w) \ V(xz), xz)

The last call to split simply finds the empty set and so all in all we
have obtained the equidimensional partition

V(xy, zw, xz) = V(x, zw)⊔V(y, z) \ V(x).

5.4 termination & correctness

In this section we prove the termination and correctness of Algo-
rithm 15. We start with the following

Lemma 5.4.1. Let X be an equidimensional affine cell. Let f ∈ R, let g ∈
(IX : f∞) and let Ig = (IX : g∞). Let X1 = X ∩V(Ig) and X2 = (X ∩
V(g)) \ V(Ig). Then:

(i) X = X1 ⊔X2;

(ii) X∩V(f) = X1 ⊔ (X2 ∩V(f)) ;

(iii) X1 is empty or equidimensional with dimX1 = dimX;

(iv) X2 is empty or equidimensional with dimX2 = dimX;

Proof. Item (i) follows from the definition of X1 and X2, note that g
vanishes on X \ V(Ig). Item (ii) follows from the fact that gf ∈ IX,
therefore f ∈

(
I(X) : I∞g )

= I(X1). Item (iii) follows from Proposi-
tion 2.2.2. Item (iv) also follows from Proposition 2.2.2: Indeed note
that X2 = X \ V(Ig) = X \X1 because g ∈

(
IX : I∞g )

.

We now prove correctness and termination of split and remove with
a mutual induction. On Line 3, the test G ⊆ I(X) can be replaced
by G ⊆

√
IX, or any condition which holds when G ⊆

√
IX and does

not hold when G ̸⊆
√
IX, this does not affect correctness or termination.

This is important when we use the witness set data structure from
Section 5.2.

Theorem 5.4.1. For any affine cell X:
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(i) If X is equidimensional, then for any f ∈ R, split terminates on
input X and f and outputs an equidimensional partition of X∩V(f)

into affine cells Y with IX ⊆ IX.

(ii) For any finite set H ⊂ R such that X \ V(H) is equidimensional,
the procedure remove terminates on input X and H and outputs an
equidimensional partition of X∩V(H) into affine cells Y with IX ⊆ IX.

Proof. We proceed by Noetherian induction on IX and assume that
both statements hold for any affine cell X ′ with IX ⊊ IX ′ .
We begin with split. Let f ∈ R and let If = (IX : f∞). If If ⊆ IX,
then Proposition 2.3.1 applies and X ∩V(f) is equidimensional. So
split(X, f) terminates and is correct in this case.
Assume now that there is some g ∈ If \ IX. Let Ig = (IX : g∞).
Lemma 5.4.1 applies: an equidimensional decomposition of X∩V(f)

is given by X∩V(Ig) and an equidimensional decomposition of

((X∩V(g)) \ V(Ig))∩V(f).

Moreover (X ∩V(g)) \ V(Ig) = X \ V(Ig) is equidimensional since X

is. Since g ̸∈ IX, we have IX ⊊ IX∩V(g) so remove(X∩V(g),H) (using
the notations of split, where H is a generating set of Ig) is correct
and terminates, by induction hypothesis. Moreover, it outputs affine
cells Y such that IX ⊊ IX∩V(g) ⊆ IY . So the recursive calls split(Y, f)
are correct and terminate.
As for remove, let H ⊂ R be finite such that X \ V(H) is equidimen-
sional. If H = ∅, then Item (ii) holds trivially. As for the case H ̸= ∅,
let h ∈ H and H ′ = H \ {h}. Since V(H) = V(h)∩V(H ′), we have

X \ V(H) = (X \ V(h))⊔
(
(X \ V(H ′))∩V(h)

)
. (5.4)

The set X \ V(h) and X \ V(H ′) are locally closed subset of X and
so equidimensional (or empty). By induction on the cardinal of H,
we assume that remove(X,H ′) is a partition of X \ V(H ′) into equidi-
mensional affine cells, and that every cell Y of this partition satis-
fies IX ⊆ IY . By Item (i), the calls split(Y,h) terminates and yield a
partition of (X \ V(H ′)) ∩V(h) into cells Y with IX ⊆ IY . Moreover
the affine cell Y = X \ V(h) also satisfies IX ⊆ IY . By Equation (5.4),
remove(X,H) terminates too and is a partition of X \V(H) into cells Y

with IX ⊂ IY .

This implies immediately

Corollary 5.4.1. equidim is correct and terminates.

5.5 benchmarks

The benchmarks for this chapter we recorded using an implementation
of the author of Algorithm 15 using the computer algebra system
OSCAR (Decker et al., 2025), written in Julia. The source code of this
implementation is available at
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https://github.com/RafaelDavidMohr/Decomp.jl

All necessary Gröbner basis computations are done using msolve for
which OSCAR offers an interface.
The benchmarks can be found in Table A.3. All benchmarks for this
chapter were recorded with K = F65521. We computed all examples
on a single Intel Xeon Gold 6244 CPU @ 3.60GHz with a limit of
200G memory, except for the Magma computations which were done
on a single core of an Intel Xeon E5-2690 @ 2.90GHz. Again we refer
to Appendix A.1 for brief explanations of the polynomial systems
on which we tested our implementation and to the beginning of
Appendix A.2 for an explanation of the symbols used in Table A.3.
To obtain the timings in Table A.3, we almost exclusively used the data
structure for affine cell based on witness sets, described in Section 5.2.
In the second column of Table A.3, we additionally provide the number
of affine cells that Algorithm 15 decomposed the respective system
into.

5.5.1 Discussion of Experimental Results

Our algorithm, i.e. Algorithm 15, seems to behave best in comparison
to the other implementations when the input system is dense in
the sense that each of the input equations of the system in question
involves most, or all, of the variables. This is the case for Cyclic(8), the
class of the PS(•) systems, the class of the Sing(•) systems, the class of
the SOS(•, •) systems and the Steiner polynomial system.
On certain polynomial systems, where each input equation involves
only a small subset of the variables, we were able to improve our
timings by foregoing the witness set based data structure and instead
using the first data structure described in Section 5.2. The improvement
we thusly obtained can be explained by the fact that intersecting very
sparse systems with random hyperplanes can “destroy their sparsity”
and make certain Gröbner basis computations much harder. This was
the case for the example Leykin-1: Here running the deterministic
version improved our timing from 15.2 seconds to 2.6 seconds.
The Gonnet and dgp6 polynomial systems demonstrate that Algo-
rithm 15 is highly sensitive to the ordering of the input equations:
By default we ran our implementation by iterating over the input
equations degree by degree in Algorithm 15. With this ordering, Al-
gorithm 15 did not terminate within several hours of computation.
When we changed this ordering on these two examples and sorted the
input equations instead by length of support, Algorithm 15 terminated
in less than one second on these two examples. Algorithm 15’s prac-
tical efficiency depends highly on the difficulty of the intermediate
polynomial systems which it encounters, these in turn depend on the
order of the input equations. On the Gonnet polynomial system, the
new ordering resulted in only a subset of the variables being involved

https://github.com/RafaelDavidMohr/Decomp.jl
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in the first few intermediate systems, thus making Gröbner basis for
them more tractable. On the dgp6 example the new ordering resulted
in an intermediate polynomial system consisting of monomials and
binomials which Algorithm 15 decomposes very finely, making the
treatment of the remaining equations substantially easier.
The system sys2874 can be attacked by both changing the order of the
input equations to be ordered by length of support and by using the
deterministic version of Algorithm 15: Doing this, the timing improved
by several orders of magnitude to 0.26 seconds.
We also remark that OSCAR’s timings improved significantly on the
examples sys2449, sys2297 and Leykin-1 (each to less than one second)
if one decomposes the radicals of these systems instead of the systems
themselves.
For the examples KdV and sys2882 we seem to be bottlenecked by very
difficult Gröbner basis computations and less by the inherent structure
of Algorithm 15. Informal experiments where we tried to compute just
a Gröbner basis for these systems using msolve suggest that even this
is a highly non-trivial computation. For these two systems, techniques
involving regular chains seem to be vastly superior over anything that
involves Gröbner basis computations.
All in all, these experiments illustrate that on a wide range of exam-
ples, Algorithm 15 performs on average better than state-of-the-art
implementations and can tackle some problems which were previously
unreachable. We refer to the next chapter for an algorithm which, in
contrast to Algorithm 13 and Algorithm 15 does not use an incremen-
tal structure and thus potentially circumvents issues stemming from
the incremental structure of Algorithm 13 and Algorithm 15.
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C O M P U T I N G A K A L K B R E N E R D E C O M P O S I T I O N O F
A N A L G E B R A I C S E T

We reuse the notation from Chapter 5. Again let F := (f1, . . . , fr) ⊂ R

be a finite sequence. For the purposes of this chapter we denote by
Irred(X) the set of irreducible components of an algebraic set X ⊂An.
Let us first define

Definition 6.0.1 (Closure Partition). Let X ⊂ An be a locally closed
set. For another locally closed set Y ⊂An we write

X
clo
= Y

if X = Y. A closure partition of X is a finite set of pairwise disjoint
locally closed sets D such that

X
clo
=

⋃
Y∈D

Y

and such that in addition Irred(Y1) ∩ Irred(Y2) = ∅ for Y1 ̸= Y2 ∈ D

and
Irred(X) =

⋃
Y∈D

Irred(Y).

Given our sequence F := (f1, . . . , fr) we will compute

Definition 6.0.2 (Irredundant Kalkbrener Partition). An irredundant
Kalkbrener partition of a locally closed set X ⊂ An is a finite set of
locally closed sets D such that D forms a closure partition of X and
such that each Y ∈ D is equidimensional.

The requirement of our output to be a closure partition can be under-
stood as a strong minimality condition: It ensures that scratching any
of the Y ∈ D, or even removing an irreducible component from one of

the Y ∈ D destroys the property V(F)
clo
=

⋃
Y∈D Y.

Remark 6.0.1. The name “Kalkbrener partition” comes from the al-
gorithm presented by Kalkbrener (1993) which computes a similar
partition using triangular sets.

Example 6.0.1. With R := Q[x,y], a Kalkbrener partition of X :=

V(xy, xz) into affine cells is given by {V(x), V(y, z) \ V(x)}.

6.1 the basic principle

While we will reuse the concept of an affine cell from Chapter 5 we
first describe the geometric principles of the algorithm presented here
without concern for this particular data structure.

85
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The theoretical underpinning of this chapter is Theorem 2.3.1. We start
by making this theorem a bit more computationally explicit:

Proposition 6.1.1. Let f1, . . . , fc ∈ R and let h ∈ R. Suppose that for
every g ∈ R with gfi ∈ ⟨f1, . . . , fi−1, fi+1, . . . , fc⟩ for some i we have g ∈
(I : h∞). Then (I/I2)h is free of rank c over (R/I)h, freely generated by the
images of f1, . . . , fc. In other words, at every point p ∈ V(f1, . . . , fc) \V(h),
f1, . . . , fc forms a local regular sequence.

Proof. Suppose that in Rh we have a relation∑
i

gifi =
∑
i

∑
j⩽i

gijfjfi

i.e.
∑

i gifi = 0 in (I/I2)h. Then we can write

∑
i

gi −
∑
j⩽i

gijfj

 fi = 0.

By assumption we then have

(gi −
∑
j⩽i

gijfj)h
k ∈ I

for every i and some k ∈ N. This implies gi ∈ Ih for every i or in
other words gi = 0 in (R/I)h for every i. This proves that (I/I2)h is
freely generated by the images of f1, . . . , fc over (R/I)h.

Based on this proposition, we will now follow a similar strategy as in
Chapter 5: With input f1, . . . , fr, let I := ⟨f1, . . . , fr⟩. We will start by
identifying a polynomial g ∈ R with gfi ∈ ⟨f1, . . . , fi−1, fi+1, . . . , fr⟩
and g /∈ I. This means that f1, . . . , fr is not a local complete intersection.
We then compute a closure partition of X := V(F) into two locally
closed sets X1 and X2 which will satisfy

X1 =
⋃

Y∈Irred(X)
g/∈I(Y)

Y,

X2 =
⋃

Y∈Irred(X)
g∈I(Y)

Y.

By Proposition 2.2.2, for X1, we may simply choose

X1 := V(f1, . . . , fi−1, fi+1, . . . , fr) \ V(g)

which is an affine cell and can thus be represented computationally by
a suitable modification of first data structure presented in Section 5.2.
This modification will be detailed in Section 6.2. Note that we may
no longer use the witness set data structure from Section 5.2, since
the affine cells we will be working with are no longer necessarily
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equidimensional, essentially because we are no longer following the
strategy of decomposing X equation-by-equation.
It remains to represent X2 via a closure partition into affine cells. To
compute a suitable X2 we define for an affine cell Y and a polynomial
p ∈ R

hull(Y,p) := Y \
[
Y \ V(p)

]
.

Note that the closure of hull(Y,p) consists precisely of the components
of the closure of Y on which p vanishes, by Proposition 2.2.2 and
Proposition 2.2.3.
Suppose now that we have computed some finite generating set P ⊂ R

for IX1
. Choose p ∈ P and let P ′ := P \ {p}. Then we compute

X2 := hull(X,g) = X \ V(P)

clo
= X \ V(p)⊔ hull(X \ V(P ′),p).

So we are decomposing X \ V(P) into the union of the components of
X where p does not vanish and the union of the components where p

vanishes but one of the elements in P ′ does not. This formula gives
us now a recursive algorithm to compute a closure partition of the
chosen X2, which will terminate, similarly to the procedure Remove

in Algorithm 15 because R is Noetherian.

Example 6.1.1. To briefly illustrate this recursive strategy for com-
puting hull(X,g) let X = V(xy, xz,yz) and g = y. First note that
(IX : g∞) = ⟨x, z⟩. Therefore

hull(X,g) = X \ V(x, z)
clo
= X \ V(x)⊔ hull(X \ V(z), x)

= V(y, z) \ V(x)⊔ hull(V(x,y), x)

= V(y, z) \ V(x)⊔V(x,y).

Once this recursive algorithm terminates with a list of affine cells
Y1, . . . , Ys of the form

Yi = V(f1, . . . , fr) \ V(hi)

we will replace f1, . . . , fr by f1, . . . , fr,g in each of these affine cells
and recursively go through the same process with X1 and all the Yi.

Remark 6.1.1. Perhaps a more obvious idea than the algorithmic strat-
egy lined out above is to, upon finding g as above, split X into

X = [X \ V(g)]⊔ [X∩V(g)] .

Note that this is not a closure partition of X, we introduce components
that X did not have.
For example, taking X = V(xy, xz) ⊂A3 as above, we have for g := y

g · xz ∈ ⟨xy⟩
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and if we factor

X = V(xy) \ V(x)⊔V(xy, xz,y)

then the algebraic set V(xy, xz,y) = V(y, xz) has the irreducible com-
ponent V(x,y) which X did not have.
One may accept this, because it yields a simpler algorithm, but we
found experimentally that this behaves worse than decomposing X into
a closure partition as above. The superflous components introduced
cause an exponential blow up in the number of output affine cells
produced on certain examples.

6.2 the data structure

Note that, given an affine cell X = V(f1, . . . , fr) \V(h), we now require
an algorithm that returns, if it exists, a polynomial g ∈ R such that
gfi ∈ ⟨f1, . . . , fi−1, fi+1, . . . , fr⟩ and g /∈ IX. This means we have to
compute syzygies of the sequence f1, . . . , fr. A natural choice for this is
to use sGB computations similarly to how Algorithm 13 uses syzygies
of some input sequence. With this in mind, we will now represent the
affine cell X by a data structure containing the following fields:

(1) A sGB tree TX whose nodes correspond to the polynomials
f1, . . . , fr in order.

(2) The polynomial h ∈ R.

(3) A Gröbner basis GX of IX w.r.t. some monomial order ≺.

(4) An upper bound cX on the maximal codimension of the compo-
nents of X.

Knowledge of GX and h permits us to add inequations (i.e. to replace
a given X by X \ V(p) for some polynomial p) similarly to how this
was done in Section 5.2, by replacing the Gröbner basis GX underlying
X with sat(GX,p) (again, computed e.g. via Lemma 3.1.2).
To find syzygy cofactors g as above we can now slightly adapt the
getsyzygy algorithm from Section 4.3.2 using the notation from this
section, this yields Algorithm 16.
Let us explain a few differences to the situation in Chapter 4. Now, the
sGB tree T just encodes a sequence of polynomials, so the setting from
Section 3.6 applies. We will just use T to conveniently insert and re-
move elements from our sequences while still correctly managing our
sGB computations. Since we no longer rely on equation-by-equation
processing either, we can use any module order we like other than
position-over-term. In practice, we restrict to homogeneous input
f1, . . . , fr and choose the degree-position-over-term order:

Definition 6.2.1 (Degree Position Over Term order). Using the notation
from Section 3.6, the degree-position-over-term (DPOT) order on Rr is
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Algorithm 16 Adapted version of getsyzygy

Input: An affine cell X with sGB tree TX

Output: A syzygy cofactor g of the sequence underlying TX not con-
tained in GX

1: procedure GetSyzygy2(X)
2: while there is a pair in P, the underlying pairset of TX

3: ProcessSPair(TX)
4: while S ̸= ∅
5: pick and remove some γ in S

6: if There exists an entry g of γ with Reduce(g,Gx,≺) ̸= 0

7: return g and the node ν corresponding to the entry
g

8: return (0, 0)

defined as uϵi ≺pot vϵj iff deg(ufi) < deg(vfj) or deg(ufi) = deg(vfj)
and uϵi ≺pot vϵj.

Choosing this module order has the advantage of giving our algorithm
a non-incremental structure but still preserving Proposition 3.6.1: If
f1, . . . , fr are homogeneous and form a regular sequence already then
Algorithm 16 returns (0, 0) and we can simply return V(f1, . . . , fr) as
our desired irredundant Kalkbrener partition. This fact can be proven
exactly as Proposition 3.6.1 where the same is proven for the POT
order, see also Corollary 7.2 in Eder and Faugère (2017).
Being able to choose a different module order also has the effect of
simplifying the ProcessSpair procedure in Algorithm 16: Compared
to the ProcessSpair procedure in Algorithm 12 we just process all
S-pairs left from T without restricting to the ones below a given node.
In addition to the operations specified in Section 4.3.1 provided by T

we will also need the option to remove a node from T. This is provided
by Algorithm 17.

Algorithm 17 Removing a node from a sGB tree

Input: A sGB tree T, a node ν

Output: The sGB tree T with ν removed, with G,P and S updated
accordingly

1: procedure RemoveNode(T,ν)
2: Delete all elements in signature ⪰T ν from G

3: Delete all elements in signature ⪰T ν from P

4: Delete all elements in signature ⪰T ν from S

5: for all nodes µ ⪰T ν in T

6: ϵ←the unit vector correspondig to µ

7: G← G∪ {ϵ}
8: P ← P ∪ {(ϵ,β) | β ∈ G and (ϵ,β) forms a regular S-pair}

9: Delete the node ν from T
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In line with Remark 4.3.1, we consider G,P and S as part of the
inherent state of T. They then need to be adjusted accordingly in Al-
gorithm 17 when we remove a node ν from T. Essentially, all elements
of G,P and S which have signature ⪰T than ν have to be deleted.

6.3 the algorithms

Combining Section 6.1 and Section 6.2 now allows us to give exact
algorithms for computing an irredundant Kalkbrener partition of V(F)

where F is a given input sequence, see Algorithm 18.
Note again that all necessary operations on affine cells in the proce-
dures Hull and CloRemove are covered by the operations Item (1)
through Item (4) in Section 5.2 which our data structure for affine cells
provides using Gröbner bases, again as in Section 5.2.

Theorem 6.3.1. The procedures Hull and CloRemove terminate and are
correct in that they satisfy their output specifications.

Proof. The correctness and termination of Hull are immediate once
the correctness and termination of CloRemove is established. The
correctness of CloRemove is proven once we can prove that

X \ V(p)⊔ hull(X \ V(P ′),p)

gives a closure partition of X \ V(P). Denote Xp := X \ V(p) and
XP ′ := hull(X \ V(P ′),p). For this, note that

XP ′ =
[
X \ V(P ′)

]
\Xp.

Hence we have X \ V(P)
clo
= Xp ⊔XP ′ and Xp and XP ′ do not share any

irreducible components by Proposition 2.2.2 and Proposition 2.2.3.
Now we just have to prove that CloRemove terminates. Note that
Line 11 is only called if IX ⊊ IY . Hence, by Noetherian induction,
during any run of CloRemove, we can only call Line 11 finitely many
times. But then termination follows, since the input set P is finite.

Corollary 6.3.1. The procedure KalkPart terminates and is correct in that
it satisfies its output specification.

Proof. To establish correctness, let us first look at Line 3. By definition,
cX is an upper bound on the maximum codimension of all components
of X. So, if codim(X) = cX, then X is equidimensional of codimension c.
To fully establish the correctness of this line, we now have to show, that,
in Line 11, cX1

is really an upper bound on the maximum codimension
of all components of X1. The closures of the components of X1 are
a subset of the closures of the components of X, so the maximum
codimension of all components of X1 is certainly bounded by cX. With
r defined as in Line 10, the codimension of all components of X1 is
bounded by r by Krull’s principal ideal theorem (Theorem 10.2 in
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Algorithm 18 Computing an irredundant Kalkbrener partition

Input: An affine cell X
Output: An irredundant Kalkbrener partition of X

1: procedure KalkPart(X)
2: if codim(X) = cX, defined as in Section 6.2
3: return {X}

4: g,ν←GetSyzygy2(X)
5: if g = 0

6: return {X}

7: else
8: X1 ← X \ V(g)

9: RemoveNode(TX1
,ν)

10: r←number of nodes in TX1

11: cX1
← min{cX, r}

12: X2 ←hull(X,g)
13: for X2 in X2

14: InsertNode(TX2
, g, any position)

15: return KalkPart(X1)∪
⋃

X2∈X2
KalkPart(X2)

Input: An affine cell X, an element g ∈ R

Output: A closure partition of hull(X,g)
1: procedure Hull(X,g)
2: H← sat(GX,g)
3: return CloRemove(X,H)

Input: An affine cell X, a finite set P ⊂ R

Output: A closure partition of X \ V(P)

1: procedure CloRemove(X,P)
2: p←any element in P

3: P ′ ← P \ {p}

4: D← CloRemove(X,P ′)

5: Y ← X \ V(p)

6: if IX = IY
7: return Y

8: else if Y = ∅
9: return D

10: else
11: return {Y}∪

⋃
Z∈D CloRemove(Z,GY)



92 computing a kalkbrener decomposition of an algebraic set

Eisenbud, 1995). This shows that cX1
is really an upper bound on the

codimension of all components of X1.
Next, in line Line 6, the equidimensionality of X follows from Theo-
rem 2.3.1 and Proposition 6.1.1.
Finally note that {X1} ∪X2, as defined in the algorithm, form a clo-
sure partition of X by Theorem 6.3.1. This is not affected by Line 14

because we have g ∈
√
X2 for all X2 ∈ X2. This finally establishes the

correctness of the algorithm.
For termination, note that IX is strictly contained in the ideal IX1

and the ideals IX2
for X2 ∈ X2 if g does not regularly intersect X1:

In this case X1 and every X2 ∈ X2 has as irreducible components a
strict subset of those of X by Proposition 2.2.2 and Lemma 2.3.1. So
by Noetherian induction, after a finite number of steps, every g found
in Line 4 regularly intersects X. In this case, X2 = ∅ and IX = IX1

but
the sequence underlying the sGB tree of X1 is strictly shorter. This
establishes the termination of KalkPart.

Remark 6.3.1. Compared to the procedure GetSyzygy (given in Algo-
rithm 13 in Chapter 4), the procedure GetSyzygy2 needs to potentially
look at every entry of a given syzygy, not just the non-zero entry of
highest index: In line with Proposition 6.1.1, if, on input f1, . . . , fr,
there is a relation

r∑
i=1

gifi

then we need to check for every i whether gi ∈ ⟨f1, . . . , fi−1, fi+1, . . . , fr⟩
where as, in the context of Chapter 4, we just work with gr. In Al-
gorithm 13, it is feasible to track enough data about the underlying
module representation of every occuring element in the sGB computa-
tion to obtain gr directly, but it is not practically feasible to track the
entire module representation which is needed to obtain every gi above
directly. We may instead use the algorithm given in Sun and Wang
(2011): Here, the module representation (or any entry of it) of any ele-
ment appearing in a signature-based Gröbner basis computation can
be constructed a posteriori from just its signature, this is more practical
than tracking full module computations throughout the computation.

6.4 benchmarks

The benchmarks for this chapter we recorded using an implemen-
tation of the author of Algorithm 18 as part of the Julia-package
AlgebraicSolving.jl. This implementation contains an implementa-
tion of Algorithm 10 to furnish the syzygy computations needed for
Algorithm 16.
This latter implementation is more optimized and considerably faster
than the implementation used for the benchmarks in Chapter 4, in-
corporating ideas by Lairez (2024) to speed up our rewrite checks
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following Definition 3.6.8: Each element α in the computed Gröbner
basis G is organized in a tree. The children of α are the results of
reducing some S-pairs of the form aα− bβ with s(bβ) ≺ s(aα). To
check if some element of the form cγ with γ ∈ G is rewriteable by the
Singular criterion, we then traverse this tree checking at each level if
there is an element whose signature divides s(cγ). If we arrive at γ
then cγ is not rewriteable, otherwise it is rewriteable. This does not
match the rewriteability check of Definition 3.6.8 but still ensures that
we choose at most one element per signature to reduce, so correctness
and termination are unaffected.
We use msolve to compute the required Gröbner bases GX for the
appearing affine cells X, as in Section 6.2. This is done to furnish a com-
parison between Algorithm 15 and Algorithm 18 independent of imple-
mentational considerations. The source code of AlgebraicSolving.jl
is available at

https://github.com/algebraic-solving/AlgebraicSolving.jl.

The benchmarks can be found in Table A.4. In it, we compare the run-
times of Algorithm 15 (implemented as in Chapter 5) and Algorithm 18.
The examples used are not homogeneous, so we homogenized our
input f1, . . . , fr w.r.t. a new variable z, yielding fhom

1 , . . . , fhom
r and ran

Algorithm 18 on X = V(fhom
1 , . . . , fhom

r ) \ V(z). After dehomogenizing
at the end, we obtain a Kalkbrener partition of V(f1, . . . , fr).
All benchmarks for this chapter were recorded with K = Fp where
p is a randomly chosen prime with less than 32 bits. We computed
all examples on a single Intel Xeon Gold 6244 CPU @ 3.60GHz with a
limit of 200G memory. Again we refer to Appendix A.1 for brief expla-
nations of the polynomial systems used to create these benchmarks.

6.4.1 Discussion of Experimental Results

Despite its completely irredundant output, with the exception of
the Cyclic(8) example, Algorithm 18 performs usually better than
Algorithm 15, or at least not much worse.
On the examples, where Algorithm 18 performs significantly better
than Algorithm 15, the behaviour indicated in the introduction of this
thesis is exhibited: Due to its incremental nature Algorithm 15 has to
treat difficult “intermediate” systems, i.e. systems where only some
of the input equations have been processed. Concretely, for example,
Algorithm 15 gets stuck on SOS(7,5) performing certain saturations on
the ideal defined by the first five (out of seven) equations of the system.
On examples like this it therefore looks to be a big advantage to be
able to work with the entire system all at once, as in Algorithm 18.
On Cyclic(8) the bottleneck for Algorithm 18 lies entirely in the syzygy
computations performed by Algorithm 16. For this example a signifi-
cant number of syzygies are computed and then verified to already

https://github.com/algebraic-solving/AlgebraicSolving.jl
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lie in the ideal underlying the affine cell in question, they therefore
cannot be used by Algorithm 18 to further decompose the affine cell.
Despite it usually bringing a performance boost, processing all defin-
ing equations at the same time can also be a bottleneck: In particular,
with the algorithm as presented here, at the start of the computation,
a Gröbner basis of the ideal defined by the input equations is required.
This slows down Algorithm 18 compared to Algorithm 15 in those
cases where Algorithm 15 performs a decomposition after only a small
handful of the input equations have been considered, this is the case
for the examples sys2353 and sys2161. We refer to Chapter 9 for ideas
how this issue could potentially be circumvented.
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G R Ö B N E R B A S I S A L G O R I T H M S F O R C O M P U T I N G
G E N E R I C F I B E R S

For this chapter we slightly change our notation: We let R := K[z, x]
be a polynomial ring in two finite sets of variables and suppose that
I ⊂ R is an ideal with MIS z (Definition 2.4.1) so that

gen(I, z) := IK(z)[x]

is a generic fiber of I. Note that this implies in particular that gen(I, z)
is a zero-dimensional ideal. Our goal in this chapter is to show how to
compute a Gröbner basis G of gen(I, z) w.r.t. a given monomial order
on Mon(x). We will give two algorithms based on Hensel lifting to
compute such a Gröbner basis. Roughly, if z = {z} is a single variable,
the idea is to pick a random a ∈ K and to compute a Gröbner basis G0

of the image of I in the polynomial ring K[z, x]/⟨z− a⟩ for the desired
monomial order. Then we lift G0, in a unique and well-defined way,
to the ring K[z, x]/⟨z − a⟩2. Proceeding further like this, i.e. lifting
modulo higher and higher powers of z− a, we recover the coefficients
of the elements in G (which lie in K(z)) as truncated power series.
If this is done up to a sufficiently large power of z− a, we can then
recover G, using Padé approximation.
The primary contribution of this chapter is based on combining this
Hensel lifting idea with the FGLM algorithm (Section 3.5). We also
show how to use the F4 algorithm (Section 3.4) with this idea, utilizing
a version of Gröbner tracers (Section 3.4.1) adapted to Hensel lifting
to obtain an efficient lifting step.
This chapter is based on the results given in Berthomieu and Mohr
(2024).

7.1 points of good specialization

We start by giving the necessary theory in order to show that our lifting
steps give correct algorithms. We first introduce some convenient
notation.

Definition 7.1.1 (Notation 1). We denote for a monomial u ∈Mon(z)

mu := ⟨v ∈Mon(z) | v ≻drl u⟩ and Iu := I+mu,

m := m1 = ⟨z⟩, as well as next(u) = min {v ∈Mon(z) | v ≻drl u}.

Definition 7.1.2 (Notation 2). Let g ∈ K[z]m[x]. Write

g =
∑

w∈Mon(x)

pw

qw
w

95
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with pw,qw ∈ K[z] and qw(0) ̸= 0 for all w ∈ Mon(x) whenever
pw ̸= 0. Then, each pw/qw can be written as a formal power series

pw

qw
=

∑
v∈Mon(z)

rw,vv ∈ K[[z]]

and for a monomial u ∈Mon(z) we denote

gu :=
∑

w∈Mon(x)

∑
v∈Mon(z)
v⪯drlu

rw,vvw = g mod mu

For a set G ⊂ K[z]m[x] we define Gu := {gu | g ∈ G}.

Throughout this section fix G ⊂ K(z)[x] to be the reduced Gröbner ba-
sis of gen(I, z) w.r.t. a monomial order ≺x on Mon(x). Our algorithms
will work under the assumption that G ⊂ K[z]m[x] and that given
the set Gu we can lift Gu uniquely to Gnext(u). In fact the condition
G ⊂ K[z]m[x] turns out to be sufficient. We capture this in a definition:

Definition 7.1.3 (Point of Good Specialization). We say that m is a
point of good specialization (for ≺x) if G ⊂ K[z]m[x].

Example 7.1.1. Consider the ideal I ⊂ Q[z, x1, x2, x3] defined by the
Cyclic 4 polynomial system given by

z+ x1 + x2 + x3,

zx1 + x1x2 + x2x3 + x3z,

zx1x2 + x1x2x3 + x2x3z+ x3zx1,

zx1x2x3 − 1.

The Gröbner basis G ⊂ K(z)[x1, x2, x3] of gen(I, z) w.r.t. to the order
≺x=≺lex (the lexicographic monomial order, Definition 3.1.3) is given
by

G = {x23 −
1

z2
, x2 + z, x1 + x3}.

Hence m is not a point of good specialization: The first element listed
in G does not lie in K[z]m[x1, x2, x3].

Remark 7.1.1. By definition, being a point of good specialization is
a Zariski open condition, so that, if K is infinite, it is ensured with
probability 1 after replacing each zi ∈ z by zi−ai for randomly chosen
ai ∈ K. In Remark 7.3.5 we point out a situation in which an upper
bound for the probability that m is a point of good specialization can
be given intrinsically in terms of I if K is finite.

We now somewhat extend Theorem 3.4.1 to our situation. Throughout
this chapter, for some polynomial ideal J and some monomial order ≺
on the underlying polynomial ring of J, SJ,≺ denotes the ≺-staircase
of J, as defined in Definition 3.1.6. Now we first show
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Theorem 7.1.1. If the ideal m is a point of good specialization, then the
K[z]m-module K[z]m[x]/I is free of finite rank.

Proof. Write A := K[z]m, K = K(z) for the field of fractions of A and
F := A[x]/I.
Suppose that m is a point of good specialization so that G ⊂ A[x]. Let
S := Sgen(I,z),≺x , note that S is finite since gen(I, z) is 0-dimensional.
We first show that S generates F as an A-module. Let u ∈ Mon(x)
with u /∈ S so that u ∈ lm≺x(gen(I, z)). Then there exists g ∈ G

and v ∈ Mon(x) such that lm≺x(vg) = u and therefore such that
lm≺x(u− vg) ≺x u.
Reducing further the expression u− vg by G is done with arithmetic
over A only and hence shows that, in F, we can write u =

∑
s∈S rss

with rs ∈ A. This shows that S generates the A-module F. Now, to
prove that F is free over A, it suffices to show that there are no non-
trivial A-relations between the elements of S. Suppose that for certain
s1, . . . , st ∈ S, there is a relation

t∑
i=1

risi = 0

in F with ri ∈ A \ {0} for all i. This gives in particular a relation
between the si over K. Hence, if j is such that sj is ≺x-maximal among
the si, then sj ∈ L, but L∩ S = ∅, a contradiction.

To proceed further, we will use

Proposition 7.1.1. Let M ̸= 0 be a finitely generated module over an integral
domain S. Suppose m ⊂ S is a maximal ideal, suppose m ′ is an ideal with√
m = m ′ and that m ′M = 0. Then M ∼= Mm.

Proof. Let φ : M→Mm be the map sending M ∋ a 7→ a/1 ∈Mm. We
show that φ is an isomorphism.
Suppose first that a/1 = 0 in Mm for a ∈M. Then there exists f /∈ m

with fa = 0. Hence the ideal

ann(a) := {s ∈ S | sa = 0}

contains m ′ + ⟨f⟩ = S. Therefore a = 0. This establishes the injectivity
of φ.
For the surjectivity, it suffices to show that for any f /∈ m we have
fM = M. Indeed, in that case, for any a/f ∈Mm with a ∈M we have
b ∈ M with a = bf. Therefore a/f = bf/f = b/1 which lies in the
image of φ. Note now that for such f we have m ′ + ⟨f⟩ = S. Therefore

M = (m ′ + ⟨f⟩)M = m ′M+ fM = fM,

finishing the proof.

In the sequel we will also use
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Corollary 7.1.1. Suppose m is a point of good specialization. Then for each
u ∈Mon(z), the ideal Iu is zero-dimensional.

Proof. By Theorem 7.1.1, the K[z]m-module K[z]m[x]/I is free of finite
rank. Note that this implies that K[x, z]/Iu ∼= K[z]m[x]/Iu (Propo-
sition 7.1.1) is a finitely generated free module over K[z]m/mu

∼=

K[z]/mu (Proposition 7.1.1) which itself is a finite dimensional vector
space over K. Hence K[x, z]/Iu is itself a finite-dimensional K-vector
space.

We now give some further properties regarding points of good spe-
cializations. Item 1 in the theorem below will be used to show the
correctness of our lifting algorithm in Section 7.2 whereas Item 2 will
be used for our complexity analysis in Section 7.3.

Theorem 7.1.2. Suppose that m is a point of good specialization.

1. For each u ∈Mon(z) and zi ∈ z, the multiplication by zi induces an
isomorphism of K-vector spaces:

uK[z, x]/Iu → ziuK[z, x]/Iziu.

2. Let ≺ be the block order eliminating x with ≺=≺x on Mon(x) and
≺=≺drl on Mon(z). Let Mu be the (unique) minimal generating set
of mu. Then, the reduced ≺-Gröbner basis of Iu is precisely Gu ∪Mu.

Proof. We reuse the notation from the proof of Theorem 7.1.1. By
Theorem 7.1.1, m being a point of good specialization implies that F is
a free R-module of finite rank.
Proof of (1): Note that multiplication by zi induces a surjective, well-
defined map of finite-dimensional (Corollary 7.1.1) K-vector spaces

uK[z, x]/Iu → ziuK[z, x]/Iziu.

Note that the structure of Vu := uK[z, x]/Iu as a vector space is
induced by the canonical A-module structure of F, because mVu = 0

and therefore (Vu)m = Vu by Proposition 7.1.1. Hence, if F ∼= Ar, we
have,

Vu ≃ (uA/mu)
r ≃ Kr.

Therefore multiplication by zi induces an epimorphism between vector
spaces of the same dimension, so it must be an isomorphism.
Proof of (2): Let S := Sgen(I,z),≺x . It suffices to show that

SIu,≺ = Su :=
⋃

v⪯drlu

vS.

Note that the set Su certainly generates K[z, x]/(I+mu) as a K-vector
space. As K[z, x]/(I+mu) ≃ F/mu, and since F is free, a K-dimension
count shows that the set Su is K-linearly independent. Now, let s ∈ S

be ≺x-minimal such that there exists some w ∈Mon(z), w ⪯drl u with
ws ∈ lm≺(Iu). By minimality, the ≺-normal form of ws w.r.t. Iu has
support in

⋃
v⪯drlu

{vt | t ≺x s, t ∈ S} ⊂ Su, therefore inducing a linear
dependence between the elements of Su, a contradiction.
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7.2 hensel lifting and the fglm algorithm

Based on the theory presented in Section 7.1 the goal in this section is
to show how to combine the FGLM algorithm (Algorithm 7, presented
in Section 3.5) with a Hensel lifting strategy in order to compute the
reduced Gröbner basis of gen(I, z) w.r.t. some monomial order ≺out

on Mon(x) where I is an ideal in K[z, x]. We will assume throughout
that m is a point of good specialization for ≺out.
Recall that the FGLM algorithm requires a Gröbner basis H (w.r.t.
some monomial order) of the ideal of interest as part of its input, this
Gröbner basis is to be converted to the reduced Gröbner basis w.r.t.
the monomial order of interest. In our setting, the role of H will be
played by multiple Gröbner bases: Namely, we fix another monomial
order ≺in on Mon(x∪ z) and define Hu to be the reduced ≺in-Gröbner
basis of Iu = I+mu (see Definition 7.1.1).

Remark 7.2.1. Let us emphasize that there is a slight abuse of notation
here: Hu is the reduced ≺in-Gröbner basis of Iu and should not be
read following the notation introduced in Definition 7.1.2.

Using the data of these Gröbner bases Hu, our goal is now to compute
the reduced ≺out-Gröbner basis G of gen(I, z).
Let us sketch our strategy. By the assumption that m is a point of
good specialization, we have G ⊂ K[z]m[x]. Recall that m1 = m, in the
notation of Definition 7.1.2. We start by running the FGLM algorithm
(Algorithm 7) with H1 to obtain the reduced ≺out-Gröbner basis of
the image of I in (K[z]/m)[x] ≃ K[x]. By Theorem 7.1.2 this Gröbner
basis will now precisely be the set G1 in the notation introduced in
Definition 7.1.2.
For a monomial u ∈Mon(z), let v := next(u). Starting with u = 1 and
a given g1 ∈ G1, we will lift gu to gv by performing linear algebra
in the finite-dimensional (Corollary 7.1.1) K-vector space vK[z, x]/Iv,
using the ≺in-Gröbner basis Hv in a role analogous to how the input
Gröbner basis is used in the original FGLM algorithm. This will rely
on Item 1 in Theorem 7.1.2.

Remark 7.2.2. In this section we assume the required Gröbner bases
Hu, u ∈ Mon(z), to be given, they can be computed for example
by Buchberger’s algorithm (Algorithm 3) or F4 (Algorithm 4) before
they are needed in our algorithm. In Section 7.3, we point out that
these sets may be obtained free of arithmetic operations from an ≺in-
Gröbner basis of I when ≺in=≺drl and I satisfies a certain genericity
assumption. Under the assumption that ≺in is a suitable block order
and that m is also a point of good specialization for ≺in restricted to
Mon(x), we give in Section 7.4 a tracer-based (Section 3.4.1) method
to compute the sets Hu, this is the second contribution of this chapter.

This lifting step is now given by Algorithm 19.
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Algorithm 19 Lifting of Gröbner basis elements

Input: A monomial u ∈Mon(z), gu ∈ Gu, v := next(u), the reduced
Gröbner basis Hv of Iv w.r.t. ≺in, the staircase S := SI1,≺out

Output: The corresponding element gv ∈ Gv

1: procedure Lift(gu,Hv,S)
2: c ← cIv,≺in(gu) see Definition 3.1.6, computed via

Reduce(Hv,≺in,gu)
3: if c = 0

4: return gu

5: compute αw s.t. c =
∑

w∈S αwcIv,≺in(uw) computed via Hv

6: return gu −
∑

w∈S αwuw

Note that in Line 5 we are just solving a linear system.

Theorem 7.2.1. If m is a point of good specialization for ≺out, then Algo-
rithm 19 terminates and is correct in that it satisfies its output specification.

Proof. We use the notation from the pseudocode of the algorithm.
The termination of the algorithm is clear. For the correctness of
the algorithm, note that the vectors cIv,≺in(uw) in line 5 are lin-
early independent thanks to Item 1 of Theorem 7.1.2. Thus, there
exists at most one choice of coefficients αw,w ∈ SI1,≺out , such that
c =

∑
w∈SI1 ,≺out

αwcIv,≺in(uw). Furthermore, since m is a point of
good specialization, the element g ∈ G corresponding to gu provides
such a choice of coefficients, implying that there exists at least one
solution to this linear system. This proves the correctness.

Remark 7.2.3. We want to emphasize that our algorithms never ver-
ify deterministically (and cannot verify deterministically) whether m
is a point of good specialization, this is a probabilistic assumption.
Nonetheless, running Algorithm 19 can sometimes detect when m is
not a point of good specialization, namely if there exists no or more
than one solution to the linear system in Line 5 of Algorithm 19. In this
case one would apply a random change of coordinates zi ← zi − ai

for each zi ∈ z and restart the computation.

Example 7.2.1. Let us unroll Algorithm 19 by considering Exam-
ple 7.1.1 over the field F11, denoting the finite field with eleven ele-
ments. For the ideal generated by the polynomials in question, m is
not a point of good specialization. So we replace the variable z by z+ 8

to ensure, probabilistically, that m is a point of good specialization.
Our ideal I is now generated by

(z+ 8) + x1 + x2 + x3,

(z+ 8)x1 + x1x2 + x2x3 + x3(z+ 8),

(z+ 8)x1x2 + x1x2x3 + x2x3(z+ 8) + x3(z+ 8)x1,

(z+ 8)x1x2x3 − 1.
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Following Remark 7.2.5, one verifies that F11[z]→ F11[z, x1, x2, x3]/I
is injective with generically finite fiber.
For our orders we choose ≺in=≺drl on Mon(x ∪ {z}) and ≺out as the
lexicographic order on Mon(x). Now, the set G1 is given by

G1 := {x23 + 6, x2 + 8, x1 + x3}.

Hence SI1,≺out = {1, x3}. Assuming that g1 := x23 + 6 is the image of
some element g in the target Gröbner basis G ⊂ F11(z)[x], we now try
to lift g1 to gz, i.e. the image of g modulo mz = ⟨z2⟩, so that, in the
notation of Algorithm 19, we have u = 1 and v = z.
If such a g exists, there must now exist, by Item 1 in Theorem 7.1.2,
unique scalars α1,αx3

∈ F11 such that

gz = g1 +α1z+αx3
zx3 = 0 mod Iz = I+ ⟨z2⟩,

and Algorithm 19 attempts to compute these scalars by finding a linear
relation between the normal forms w.r.t. ≺in of g1, z and zx3 modulo Iz.
Using an ≺in-Gröbner basis of Iz, we find that SIz,≺in = {1, z, x3, zx3}
and we compute, using normal form computations

cI2,≺in(g1) = (0, 7, 0, 0) ∼ 7z

cI2,≺in(z) = (0, 1, 0, 0) ∼ z

cI2,≺in(zx3) = (0, 0, 0, 1) ∼ zx3

so that finally, α1 = 6 and αx3
= 0 which yields for gz the unique

candidate gz = x23 + (4z+ 6), finishing the example.

Algorithm 19 is only able to compute the set Gu for a monomial
u ∈Mon(z), i.e. it “approximates” the set G up to order u. A natural
question is then how to extract the actual set G out of Gu. For this,
we may use the classical technique of Padé approximants. Having
computed the set Gu, we have computed the image gu of a given
element g ∈ G as

gu =
∑

w∈Mon(x)

∑
v⪯drlu

rw,vvw.

Now we have for the coefficient pw/qw ∈ K(z) of w in g

pw − qw

∑
v⪯drlu

rw,vv = 0 mod mu, (7.1)

which determines a set of linear equations in the unknown coefficients
of pw and qw. Let d := degu. Suppose that deg(next(u)) = d+ 1, so
that mu = md+1. Fix d1 and d2 with d1 + d2 = d and let n be the car-
dinality of the set z. If we impose that degpw ⩽ d1 and degqw ⩽ d2,
then the linear system (7.1) has a finite set of unknowns and equations.
Let us say that any solution to this linear system of equations is a Padé
approximant of order (d1,d2) of λw :=

∑
degv<d+1 rw,vv. If d1 and d2

are large enough then any Padé approximant of order (d1,d2) of λw
is equal to pw/qw:
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Lemma 7.2.1 (Proposition 2.1 in Guillaume and Huard, 2000). Let
p/q be a Padé approximant of order (d1,d2) of λw. If d1 ⩾ degpw and
d2 ⩾ degqw then p/q = pw/qw.

By solving this linear system we obtain an algorithm Pade(gu,d1,d2)

which computes a candidate gcand ∈ K(z)[x] whose coefficients are
Padé approximants of the coefficients of gu of order (d1,d2) regarded
as a polynomial in the variables x. Let us say that gu has stable Padé
approximation if for v := next(u) we have

gcand = gv mod mv.

Based on this, we now obtain Algorithm 20 for computing the set G
probabilistically. We state this algorithm in an informal way. In Line 6

by “lifting Glift to degree d” we mean that we compute the set Gu

where u is the ≺drl-maximal monomial of degree d.

Algorithm 20 Computing a Gröbner basis of the generic fiber

Input: A generating set F of I, a monomial order ≺in, a monomial
order ≺out.

Output: A guess for the set G.
1: H← reduced ≺in-Gröbner basis of I1 (using F)
2: Glift,S← FGLM(H,≺out)

3: Gresult ← ∅
4: d← 2

5: while Glift ̸= ∅
6: Glift ← lift Glift to degree d (Algorithm 19 with S)
7: Run Pade(g,d/2,d/2) for all g ∈ Glift

8: Lift Glift one monomial higher (Algorithm 19 with S)
9: Add to Gresult all elements with stable Padé approx.

10: Remove the corresponding elements from Glift

11: d← 2d

12: return Gresult

Clearly, by Theorem 7.2.1 and Lemma 7.2.1, this algorithm returns the
correct result if the computed Padé approximants are of sufficiently
large degree and m is a point of good specialization.

Remark 7.2.4. Note that Algorithm 19 works also if we replace v by any
monomial larger than u: In this case we just have to write c as a linear
combination of all the vectors cIv,≺in(uv

′) where u ≺drl v
′ ⪯drl v.

Example 7.2.2 (Example 7.2.1 continued). Let us try to see how Al-
gorithm 20 recovers the element denoted g in Example 7.2.1. First,
Algorithm 20 lifts the element g1 = x23 + 6 to degree d = 2, i.e. we
compute the image of g modulo z3 (Line 6 in Algorithm 20). This
yields, in our usual notation,

gz2 = x23 + (2z2 + 4z+ 6).
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Now we attempt (Line 7 in Algorithm 20) to find a Padé approximation
of order (1, 1) for g, i.e., here, p,q ∈ F11[z] of degree at most one such
that p/q = 2z2 + 4z+ 6 mod z3 by solving a linear system as outlined
above. This yields the candidate

gcand = x23 +
z+ 6

5z+ 1

which satisfies gcand = gz2 mod z3. Next, in Line 8, we lift g one
monomial higher, i.e. modulo z4. This yields

gz3 = x23 + (7z3 + 2z2 + 4z+ 6),

But p/q has now the truncated power series z3 + 2z2 + 4z + 6, so
that g2 does not have stable Padé approximation. Hence we double
d to 4 and lift gz3 to gz4 , i.e. from modulo z4 to modulo z5, and
attempt another Padé approximation. This time, computing a Padé
approximation of order (2, 2), this yields the candidate

gcand = x23 +
1

10z2 + 6z+ 2
.

Finally, we lift gz4 to gz5 and find that gz5 = gcand mod z6. So gz4

has stable Padé approximation and we terminate with g := gcand.
Computing the ≺out-Gröbner basis G of gen(I, z) using block orders
as in Proposition 3.2.2 shows that g is indeed the correct element.

Remark 7.2.5. Note that we have so far required that the partition of
the variables of K[z, x] is given. Recall that, using Proposition 3.2.1,
one can also computationally determine such a partition s.t. gen(I, z)
is zero-dimensional from Proposition 3.2.1 from any Gröbner basis of
I.

7.3 complexity estimates

In this section, we analyze the arithmetic complexity of a version of the
algorithm presented in the last section more akin to the original FGLM
algorithm as presented by Faugère, Gianni, Lazard, and Mora (1993).
We will reuse the notation from the last section and additionally denote
throughout z = {z1, . . . , zr}. We will treat r as a constant in our analysis,
note that r = dim(I) by Proposition 2.4.1 and Proposition 3.2.1.
We now add the additional assumption that the order ≺in used in the
last section is a block order eliminating x with ≺in=≺drl on Mon(z)
and that m is a point of good specialization for both ≺in restricted to
Mon(x) and ≺out. Here, we analyze the number of arithmetic opera-
tions in K required to obtain the sought ≺out-Gröbner basis G using
the same strategy as in Algorithm 20, but with a more optimized
lifting step. As is standard, we say that an algorithm has arithmetic
complexity Õ (g(n)), for some polynomial g, if the algorithm has
arithmetic complexity O

(
g(n) logk(n)

)
for some k.
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Our cost analysis will require measuring the cost of performing certain
linear algebra operations on structured matrices, these will enable us
to perform the necessary normal form computations in Algorithm 20

with a well controlled cost, similar to what has been done by Faugère,
Gianni, Lazard, and Mora (1993). These structured matrices will be
multiplication matrices, named so because they will represent the K-
linear maps

K[z, x]/Iu → K[z, x]/Iu
f 7→ xf

for x ∈ x and different u ∈Mon(z).
In our setting these matrices will have a very particular structure,
namely they can be identified with polynomials in a certain way. We
introduce the necessary theory before we perform our complexity
analysis.

7.3.1 Multi-Block-Toeplitz Band Matrices

Let S be any ring and let Sk×k be the S-algebra of k× k-matrices with
entries in S. Consider the map

ϕ : S[t]→ Sk×k

t 7→ (δi,j−1)1⩽i,j⩽k

where δi,j−1 ∈ S denotes the Kronecker delta.
Suppose that p ∈ KD×D[z1, . . . , zr] with degree in zi bounded by
some ki ∈ N then, slightly abusing notation, p can be identified
with a matrix ϕ(p) ∈ Kk1...krD×k1...krD: We first apply the map ϕ

defined above with S := KD×D[z1, . . . , zr−1] and t := zr. This will
yield a matrix in

(
KD×D[z1, . . . , zr−1]

)kr×kr . We can then apply ϕ to
each entry of this matrix, this time with S := KD×D[z1, . . . , zr−2] and
t := zr−1, this yields a matrix in

(
KD×D[z1, . . . , zr−2]

)krkr−1×krkr−1 .
Continuing in this manner, we obtain ϕ(p) ∈ Kk1...krD×k1...krD.

Definition 7.3.1 (Multi-Block-Toeplitz Band). A matrix

M ∈ Kk1...krD×k1...krD

is called multi-block-Toeplitz band of type (k1, . . . ,kr,D) for k1, . . . ,kr,D ∈
N if there exists a polynomial p ∈ KD×D[z] with partial degrees
bounded by k1, . . . ,kr s.t. M = ϕ(p). It is called block-Toeplitz band if
r = 1.

Remark 7.3.1. Note that if r = D = 1, then a block-Toeplitz band matrix
is a lower-triangular Toeplitz matrix, i.e. a matrix with entries repeating
along each diagonal.
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A vector v ∈ Kk1...krD may be recursively identified with a polyno-
mial qv ∈ KD[z] as follows: Divide v into kr blocks v0, . . . , vkr−1 ∈
Kk1...kr−1D. Having defined qv0

, . . . ,qvkr−1
∈ KD[z1, . . . , zr−1], let

qv := qvkr−1
zkr−1
r + · · ·+ qv0

.

We now want to measure the arithmetic cost of computing a product
Mv with v a vector where M is multi-block-Toeplitz band and the cost
of inverting such a matrix M. We start with the case r = 1.
For the required complexities, we need the concept of displacement
rank of a matrix.

Definition 7.3.2 (Displacement Rank). Let Z ∈ Kn×n be the matrix
defined by

Z := (δi−1,j)1⩽i,j⩽n,

where δi−1,j is the Kronecker delta and let ZT be the transpose of Z.
The displacement rank of a matrix M ∈ Kn×n is

α(M) := rk(M−ZMZT).

Note that the displacement rank of a Toeplitz matrix (and thus in
particular of block-Toeplitz band matrix with r = D = 1) is upper
bounded by 2. The concept of displacement rank can be used as a
general method to utilize “Toeplitz-like” structures in algorithmic
linear algebra and has been investigated by Bitmead and Anderson
(1980), Bostan, Jeannerod, Mouilleron, and Schost (2017), and Morf
(1980). We now have:

Proposition 7.3.1. Let M be block-Toeplitz band of type (k,D) and let
v ∈ KkD. Then

1. Mv can be computed in Õ
(
kD2

)
arithmetic operations in K,

2. If N is another block-Toeplitz band matrix of type (k,D) then the
product MN can be computed in Õ

(
kD3

)
operations and

3. M can be inverted in Õ
(
kD3

)
.

Proof. For any matrix M ∈ Kn×n, according to Bostan, Jeannerod,
Mouilleron, and Schost (2017), a matrix-vector product Mv can be com-
puted in time Õ (α(M)n) and M can be inverted in time Õ

(
α(M)ω−1n

)
.

Using a series of rows and column swaps, more precisely sending
row pD+ i to ik+ p (resp. column qD+ j to jk+ q), we may trans-
form a block-Toeplitz band matrix M of type (k,D) into a matrix
N = (Nij)0⩽i,j<D ∈ KkD×kD where each Nij lies in Kk×k and is
Toeplitz. Now, N−ZNZT has D dense columns and (k− 1)D columns
with potentially nonzero coefficients in positions iD for all i. Only D of
these latter columns can be linearly independent so that α(M) ⩽ 2D,
proving the claims in Item 1 and Item 3.
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To prove the claim in Item 2, note that MN is again block-Toeplitz
band of type (k,D). Therefore, to compute the product MN it suffices
to compute the product of M with the first D columns of N. Thanks
to Item 1, this is done in time Õ

(
kD3

)
.

Remark 7.3.2. We remark that the algorithm for matrix inversion used
in the proof of Item 3 in Proposition 7.3.1 is probabilistic (Las Vegas).
This probability depends on the size of a chosen finite subset in K

with probability of failure going to zero as the size of this finite subset
increases.

We now go back to the general case r ⩾ 1.

Proposition 7.3.2. Let M ∈ Kk1...krD×k1...krD be multi-block-Toeplitz
band of type (k1, . . . ,kr,D) and let v ∈ Kk1...krD. Then

(1) Mv can be computed in Õ
(
k1 . . . krD

2
)

arithmetic operations in K

and

(2) M can be inverted in Õ
(
k1 . . . krD

3
)
.

Proof. Proof of (1): The case r = 1 being settled by Proposition 7.3.1, we
work by induction over r. Identify v with an element qv ∈ KD[z] as
above and let p ∈ KD×D[z] be s.t. ϕ(p) = M. We measure the cost
of computing the product pqv. Make the substitution zr ← z2kr

r−1 and
denote by p̃ and q̃v the images of p and qv under this substitution.
The degrees in zr−1 of p̃ and q̃v are bounded by 2kr−1kr. By our
induction hypothesis we can therefore compute the product p̃q̃v in
Õ
(
k1 . . . krD

2
)

arithmetic operations in K. Regarding p and qv as bi-
variate polynomials in zr−1 and zr, we can now recover the coefficient
of zir−1z

j
r in pqv as the coefficient of zir−1z

2kr−1j
r−1 = z

2kr−1j+i
r−1 in the

product of p̃q̃v since the degree of p in zr−1 is bounded by 2kr−1 − 1.
This proves the desired statement.
Proof of (2): Again, we work inductively over r, the case r = 1 being
settled by Proposition 7.3.1. Let p ∈ KD×D[z] be such that ϕ(p) = M.
Regarding p as a univariate polynomial in zr, i.e.

p ∈
(
KD×D[z1, . . . , zr−1]

)
[zr],

the inverse of M is then given by the associated power series of 1/p
up to order kr. As is well known, this can be done in the same time as
multiplying p with another polynomial q ∈

(
KD×D[z1, . . . , zr−1]

)
[zr]

with partial degrees bounded by k1, . . . ,kr using Newton iteration,
see e.g. Section 2 in Johansson (2015). By the exact same substitution
argument as in the proof for Item (1), and using Item 2 in Proposi-
tion 7.3.1, this can be done in time Õ

(
k1 . . . krD

3
)

by our induction
hypothesis, finishing the proof.
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7.3.2 The Complexity Analysis

Now, let us introduce the notion of multiplication tensors relevant to
this complexity analysis.

Definition 7.3.3 (Multiplication Tensor). Let I be a zero-dimensional
ideal in the polynomial ring R and let ≺ be a monomial order. Let
S := SI,≺. The multiplication tensor of I w.r.t. ≺ is defined as the
3-tensor

M(I,≺) = (cI,≺(xiu))xi∈x,u∈S.

Recall that, in the context of this definition, the vectors cI,≺(xiu) are
defined as in Definition 3.1.6. Note that M(I,≺)xi

is precisely the
matrix representation of the linear map R/I→ R/I, f 7→ xif in terms
of the basis S. The column of M(I,≺)xi

indexed by u ∈ S is the vector
cI,≺(xiu).
We now fix D to be the degree of gen(I, z), i.e. the K(z)-dimension of
K(z)[x]/ gen(I, z). Note that this degree is upper-bounded by that of I.
Denote further Ik := ⟨zk1 , . . . , zkr ⟩, Hk as the reduced ≺in-Gröbner basis
of Ik and Gk as the reduced ≺out-Gröbner basis of Ik. We now analyze
the complexity of successively converting Hk to Gk (like in Faugère,
Gianni, Lazard, and Mora, 1993) for k = 2, 4, . . . , 2ℓ until ℓ is large
enough so as to recover G from Gk by means of Padé approximation
as in Algorithm 20. We will closely follow the analysis of Faugère,
Gianni, Lazard, and Mora (1993) while using the fact that the occuring
multiplication matrices turn out to be multi-block-Toeplitz band in
conjunction with the results of Section 7.3.1.

Theorem 7.3.1. Let k ∈N. Let c be the cardinality of x. Suppose that we are
given the set Hk. Then the multiplication tensor of Ik w.r.t. ≺in is computed
in arithmetic complexity Õ

(
krcD3

)
.

Proof. Let Ek be the ≺drl-staircase of ⟨zk1 , . . . , zkr ⟩ and let S be the ≺in-
staircase of I1. Ek consists of all monomials in Mon(z) with partial
degrees bounded by k. By Item 2 of Theorem 7.1.2 we have that the
≺in-staircase Sk of Ik is given by

Sk =
⋃

u∈Ek

uS.

For xi ∈ x let Mxi
:= M(Ik,≺in)xi

. We now measure the cost of
computing the matrices Mxi

. For u ∈ z, let Mu ∈ KD×D be the
matrix whose columns are indexed by xiS, whose rows are indexed
by uS and whose entries are the coefficients corresponding to the
elements of uS of the ≺in-normal forms of the elements in xiS. Note
now that for u ∈Mon(z) and v ∈Mon(x) we have

NF≺in(uv, Ik) = uNF≺in(v, Ik).
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In particular, the multiplication matrices corresponding to the vari-
ables z1, . . . , zr are obtained free of arithmetic operations. This also
implies that if we define

pxi
:=

∑
u∈Ek

Muu

then Mxi
= ϕ(pxi

) with ϕ defined as above, so that Mxi
is multi-

block-Toeplitz band of type (k, . . . ,k,D). In particular, to recover the
matrices Mxi

, it suffices to compute the ≺in-normal forms of the
elements in xS of which there are at most cD. Now, we proceed as
follows: Sort the set xS by the monomial order ≺in. Choose u ∈ xS
and suppose that the normal forms of all elements less than u in xS
are known. Two easy cases can arise:

1. u ∈ S, in which case the normal form of u is computed without
any arithmetic operations;

2. u ∈ lm(Hk), in which case the normal form of u is computed
without any arithmetic operations, it is just given by the tail of
the corresponding element in Hk.

Lastly, it can happen that u ∈ lm(Ik) but u /∈ lm(Hk). In this case
there exists v ∈ xS and xj ∈ x with u = xjv. By assumption the normal
form of v is known and so is the normal form of each element xjb with
b ∈ S and b ≺in v. Since Mxj

is also multi-block-Toeplitz band of type
(k, . . . ,k,D), we can now compute the required column of Mxi

as the
product of Mxj

with a vector. This is done in time Õ
(
krD2

)
thanks to

Proposition 7.3.2. We need to compute at most cD such matrix-vector
products concluding the proof.

From this we conclude

Corollary 7.3.1. Let k ∈N. Let c be the cardinality of x. Given the set Hk,
the set Gk is computed in arithmetic complexity Õ

(
krcD3

)
.

Proof. By Theorem 7.3.1, the ≺in-multiplication tensor of Ik can be
computed in arithmetic complexity Õ

(
krcD3

)
. Having computed this

tensor, we proceed as follows: let S be the ≺in-staircase of I1 = I+m,
T be the ≺out-staircase of I1 and L be the set of minimal ≺out-leading
terms of I1, with z removed. Denoting Sk as in the proof of the
preceding theorem, and similarly Tk, now we first compute the ≺in-
normal forms of each element in T ∪ L w.r.t. I2k. Writing these normal
forms as column vectors indexed by S yields a tableau of the form

[ Tk L

S C B
]
.

Note that C is again, by the exact some argument as in the proof of the
preceeding theorem, multi-block-Toeplitz band of type (k, . . . ,k,D).
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The required matrices C and B can be computed by using the ≺in-
multiplication tensor of Ik , enumerating the monomials in Mon(x)
in order of ≺out and computing their normal forms via matrix-vector
multiplications similar to the proof of the preceding theorem. Combin-
ing this with the fact that the multiplication matrices of Ik w.r.t. ≺in

are multi-block-Toeplitz band of type (k, . . . ,k,D), this can again be
done in time Õ

(
krcD3

)
. Finally, to compute the set Gk, we have to

write each column in B corresponding to an element in L as a K-linear
combination of the columns corresponding to T , Hence this requires

• inverting the submatrix C which, by Proposition 7.3.2, is done in
time Õ

(
krD3

)
;

• computing the product C−1B.

Note that C is certainly invertible, since it encodes a change of basis,
and that the cardinality of L is upper bounded by cD. Thus, for the
second step above, we have to compute at most cD matrix-vector
products of the form C−1

0 v. Again, thanks to Proposition 7.3.2, this is
done in time Õ

(
krcD3

)
. This finally yields the desired complexity.

Remark 7.3.3. Let us compare Corollary 7.3.1 with Proposition 4.1 in
Faugère, Gianni, Lazard, and Mora (1993): Here, it is shown that the
reduced Gröbner basis of a zero-dimensional ideal J in n variables
w.r.t. one monomial order can be converted to the reduced Gröbner
basis w.r.t. another order in O(nD3) arithmetic operations where D

is the degree of J. Our Corollary 7.3.1 preserves the cubic behavior in
the degree while being quasi-linear in the number of terms computed
in K[z].

The following corollary gives the complexity of computing successively
the sets G2i from H2i until i is large enough to recover G, like in
Algorithm 20.

Corollary 7.3.2. Let c be the cardinality of x. Let δ− 1 be the maximum
degree of all numerators and denominators of all coefficients of G. Further,
let ℓ be minimal such that 2ℓ ⩾ 2δ.
Given H2ℓ , computing successively the sets G2i , for i = 1, . . . , ℓ, can be done
in arithmetic complexity Õ

(
2ℓrcD3

)
= Õ

(
δrcD3

)
.

Proof. Note that the sets H2i , for i = 1, . . . , ℓ, are obtained from H2ℓ

free of arithmetic operations. By Corollary 7.3.1, the computation of
G2i requires Õ

(
2ircD3

)
operations. Summing these complexities for

i from 1 to ℓ yields the desired complexity.

We close this section by pointing out a well-known case in which ≺in is
the ≺drl order, the required Gröbner bases Hu of I+mu are extracted
without any arithmetic operations of the ≺drl-Gröbner basis H of I

and the ≺drl-staircase of I+mu behaves the same as in the above case
when ≺in is a block order. We start with
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Definition 7.3.4 (Projective Generic Position). Let y be an extra variable
and let Ihom ⊂ K[z, x,y] be the homogenization of I w.r.t y. Suppose
that Ihom is Cohen-Macaulay, i.e. that the length of any maximal
regular sequence in K[z, x,y] equals the dimension of Ihom, which
is the cardinality of z plus one. We say that I is in projective generic
position if {y}∪ z is such a maximal homogeneous regular sequence in
K[z, x,y]/Ihom.

Remark 7.3.4. Note that in the homogeneous setting of Definition 7.3.4,
{y}∪ z is a maximal homogeneous regular sequence in K[z, x,y]/Ihom

if and only if dim(Ihom + ⟨y, z⟩) = 0. Using Lemma 2.3.2 this can be
ensured after a generic (i.e. chosen out of a suitably defined Zariski-
open subset) change of coordinates, since Cohen-Macaulayness implies
in particular equidimensionality (Corollary 18.11 in Eisenbud, 1995).

Supposing that Ihom is Cohen-Macaulay we now have the following
statement. This statement has frequently been used in the complexity
analysis of Gröbner basis algorithms.

Lemma 7.3.1 (Theorem 15.13 in Eisenbud, 1995). Let I be in projective
generic position with Ihom Cohen-Macaulay. Let H be the reduced ≺drl-
Gröbner basis of I (with the variables in z considered smaller as those in x).
Then

lm(H) ⊂Mon(x).

In particular, if S is the ≺drl-staircase of I1 := I+m, then the ⪯drl-staircase
of I+mu is given by

Su :=
⋃

v⪯drlu

vS.

This implies that when I is such that Ihom is Cohen-Macaulay and is in
projective generic position then we can replace ≺in with ≺drl and Hu

with H in the statements of Theorem 7.3.1 and Corollary 7.3.1. This
now implies in particular:

Theorem 7.3.2. Let f1, . . . , fc be a regular sequence in projective generic
position of respective degrees d1, . . . ,dc in K[z, x]. Assume that the ≺drl-
Gröbner basis of I = ⟨f1, . . . , fc⟩ is known and that the ≺out-Gröbner basis
G of I ·K(z)[x] has coefficients which are rational functions with degrees at
most δ in the numerators and denominators. Then, one can compute G up to
precision 2δ using Õ

(
δrc(d1 · · ·dc)

3
)

operations in K.

Remark 7.3.5. Let us close this section with a remark on the proba-
bility of m being a point of good specialization in the situation of
Theorem 7.3.2 if ≺out=≺lex. If gen(I, z) is in shape position (Defini-
tion 3.2.1), then the reduced ≺lex-Gröbner basis of gen(I, z) is of the
form

{gc(z, xc), x1 − g1(z, xc), . . . , xc−1 − gc−1(z, xc)}

with gc(z, xc) ∈ K[z, xc] of total degree D := d1 . . . dc. One can then
show (Section 3.3, Proposition 2, Definition 1 and the following para-
graph in Schost, 2003), that the degree of the lcm of the denominators
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of the coefficients of g1, . . . ,gc−1 is bounded by D2. Then, if K = Fq

for a prime power q, the Schwartz-Zippel lemma (Schwartz, 1980) im-
plies that the probability of m not being a point of good specialization
is bounded by D2/q which goes to zero as q increases.

7.4 using tracers for gröbner basis lifting

Again reusing the notation from Section 7.2, recall that Algorithm 20

requires the ≺in-Gröbner bases Hu of the ideals I+mu. In this section,
we will show how these Gröbner bases can be computed non-naively
when ≺in is a block order on Mon(x∪ z) eliminating x using a similar
idea to the one of Gröbner tracers given in Section 3.4.1. Non-naively
means here, that when we want to compute Hu for usage in Algo-
rithm 20, we have previously computed Hv for some v ≺drl u. We can
then again lift Hv to obtain Hu, which we show how to do here by com-
bining the F4 algorithm with Hensel lifting via the concept of tracers
introduced in Section 3.4.1. Diagrammatically, the algorithm presented
in this section can be combined with Algorithm 19 as follows:

Hv Hu

Gv Gu

lift via this section

input of Algorithm 19 input of Algorithm 19

lift via Algorithm 19

Besides, the algorithm presented in this section can be used to compute
Gröbner basis over fraction fields in its own right without performing
arithmetic over the same function field or use of elimination orders as
in Proposition 3.2.2.
Recall that under the additional assumption that m is a point of good
specialization for ≺in restricted to Mon(x), by Theorem 7.1.2, the
reduced ≺in-Gröbner basis of Iu is given by Hu ∪Mu, where H is
the reduced ≺in-Gröbner basis of gen(I, z) and Mu is the minimal
generating set of mu. If, in addition, the origin in the z-space lies
outside a suitably chosen Zariski-closed subset in the z-space, then all
coefficients that appear when computing H with an algorithm like F4

lie in K[z]m.
We will now roughly do the following:

(1) Suppose that I = ⟨F⟩ for a finite sequence F ⊂ R. Run F4 on the
system F mod m and extract a tracer T out of this computation.
After reduction, this F4 run yields the Gröbner basis H1, by
Theorem 7.1.2.

(2) Inductively, suppose that we have computed the set Hu for
u ∈Mon(z) and let v := next(u).
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(3) Apply T to the system F mod mv, this yields the set Hv, again by
Theorem 7.1.2. Note that computing the required echelonizations
over the ring K[z]/mv is well defined: All coefficients in the
appearing matrices are invertible modulo mv by the assumption
above.

In the situation of Item (3), we previously applied T modulo mu, this
means that we have echelonized a series of Macaulay matrices with
entries in K[z]/mu. Now we have to echelonize the Macaulay matrices
with the same row and column labels but with entries in K[z]/mv

instead. Instead of recomputing these echelonizations from scratch,
we will want to lift the previously obtained echelonizations from
K[z]/mu to K[z]/mv. Let us now show how to do this, when z = {z}

consists of a single variable.

7.4.1 Lifting of LU-Factorizations

We assume now that z = {z} is a single variable. Let us denote R := K[z]
and Q := K(z). In this section, we want to lift an echelonization of
a matrix, or in other words a LU decomposition, from the field R/m

to R/mk+1 for some k ⩾ 0. As previously, we assume that the steps
of the computation of this decomposition over R/m are exactly those
over Q projected onto R/m, in particular this implies that no nonzero
entry p/q ∈ Q with p,q ∈ R is such that p /∈ m and q ∈ m.
Let A ∈ Qn×m be a matrix with LU-factorization A = LU with L ∈
Qn×n and U ∈ Qn×m. We assume that A,L and U have coefficients
in Rm. In that case we have matrices Ak,Lk and Uk with coefficients
in R/mk+1 and

A = Ak mod mk+1, L = Lk mod mk+1, U = Uk mod mk+1.

We also have Ak = LkUk mod mk+1. Now we want to lift Lk and Uk

to R/mk+2. This can be done as follows:

Theorem 7.4.1. Given A, L−1
0 and Lk,Uk there is an algorithm which

computes Lk+1 and Uk+1 in O
(
kmn2

)
arithmetic operations in K.

Proof. Recall that Lk is invertible and that L−1
k = L−1

0 mod m. Thus,

A = LkUk + zk+1δA mod mk+2

= Lk
(
Uk + zk+1L−1

k δA
)

mod mk+2

= Lk
(
Uk + zk+1L−1

0 δA
)

mod mk+2,

and we define B := Uk + zk+1L−1
0 δA. The matrix δA is computed by

computing the term of valuation k+ 1 of the product LkUk, this is
done in O

(
kmn2

)
arithmetic operations. As L−1

0 mod m has already
been computed, L−1

0 δA is computed in O
(
mn2

)
arithmetic operations
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in K. It now suffices to prove that we can compute an LU-factorization
of B over R/mk+2 in O

(
mn2

)
operations in K. Note that we can write

B = U0 + zU ′
1 + · · ·+ zkU ′

k + zk+1V ,

where
U ′

i =
1

zi
(Ui −Ui−1)

is upper triangular with coefficients in R/m, for all 1 ⩽ i ⩽ k, and V =
1

zk+1 (B−Uk) ∈ Kn×n. Echelonizing B comes down to reducing the
rows of V with the rows of B above. In particular, since bi,1 = zk+1vi,1

for i > 1, it can be reduced using the pivot b1,1, which is invertible in
R/mk+1 by assumption. Thus, the row operation

bi,j ← bi,j − zk+1 bi,1

b1,1
b1,j mod mk+2

= zk+1(vi,j −
vi,1

u ′
0,1,1

u ′
0,1,j mod m)

consists only in performing row operations on the layer of valuation
k+ 1 in B. In other words, if

L ′ =


1

−v2,1/u
′
0,1,1z

k+1 1
...

. . .

−vn,1/u
′
0,1,1z

k+1 1


then L ′B can be written

L ′B = U ′
0 + zU ′

1 + · · ·+ zkU ′
k + zk+1V ′

where we have v ′i,1 = 0 for all i ⩾ 2. Proceeding with further row
operations like this, we thus triangularize B. This clearly has the same
cost as echelonizing a matrix in Kn×m, finishing the proof.

Remark 7.4.1. Theorem 7.4.1 and its proof are also valid for R = Z,
Q = Q, m = p a good prime and K = Fp. We refer e.g. to Dixon (1982),
Haramoto and Matsumoto (2009), and Pan (2011) for other methods
in p-adic linear algebra.

7.4.2 The Algorithm

Analogous to Algorithm 6, we can now bake the lifting step sketched at
the beginning of this section into an algorithm, this gives Algorithm 21.
Instead of explicitly using a tracer, we lift directly the echelonizations
of the considered Macaulay matrices, as outlined at the beginning
of this section so as to utilize Theorem 7.4.1. We again assume that
z = {z} is a single variable.
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Algorithm 21 Gröbner Basis Lifting Using a Tracer

Input: A finite sequence of polynomials F ⊂ R, a monomial order ≺in

on Mon(x), k ∈N

Output: The set Hzk+1 as defined in this section
1: Run F4(F mod m,≺)
2: M

(0)
1 = L1,0U1,0, . . . ,M(0)

r = Lr,0Ur,0 ← The Macaulay matrices
considered by this run together with their LU-factorizations

3: for i = 1, . . . ,k
4: G← F mod mk+1

5: M
(k)
i ← the Macaulay matrix with the same row/column labels

as M
(k−1)
i , built from G

6: Ui,k ← the upper triangular part of a LU-factorization of
M

(k−1)
i lifted from one of M(k)

i as in Theorem 7.4.1
7: Append all rows of Ui,k with leading monomial different from

the corresponding row of M(k)
i to G

8: return G

The termination and correctness of Algorithm 21 follows from the
considerations at the beginning of this section.
Note that Theorem 7.4.1 sais that we can lift a LU-factorization from
K[z]/mk to K[z]/mk+1 at k times the same cost as computing the
corresponding LU-factorization over K[z]/m ∼= K. We obtain:

Corollary 7.4.1. Suppose that, in the context of Algorithm 21, the Gröbner
basis Hz of the image of I = ⟨F⟩ in K[z, x]/m ∼= K[x] can be computed in A

arithmetic operations by the F4 algorithm. Then Algorithm 21 computes the
Gröbner basis Hzk+1 in O

(
k2A

)
operations.

Remark 7.4.2. We investigated the complexity of Algorithm 21 only
with a linear lifting strategy, i.e. when we lift from modulo mk to mod-
ulo mk+1. A question for future research is whether the complexity
in Corollary 7.4.1 becomes quasi-linear in k when a quadratic lifting
strategy is chosen, i.e. when we lift from modulo mk to modulo mk2

as in Section 7.3.2.

7.5 benchmarks

In this section, we provide benchmarks for a proof-of-concept im-
plementation of Algorithm 20. These benchmarks are recorded in
Table A.5.
We first give a brief description of our implementation. This imple-
mentation is written using OSCAR. All required Gröbner basis com-
putations use msolve via its Julia-interface AlgebraicSolving.jl or
Groebner.jl (Demin and Gowda, 2023), also written in Julia. The
implementation is available at

https://gitlab.lip6.fr/mohr/genfglm

https://gitlab.lip6.fr/mohr/genfglm
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For the recorded benchmarks, the following computations were per-
formed, keeping the notation Section 7.2 and Section 7.3:

(1) Compute a ≺drl-Gröbner basis for the polynomial ideal I in
question.

(2) Use this≺drl-Gröbner basis to compute a maximally independent
set of variables modulo I (following Proposition 3.2.1), this gives
us the partition of the variables into the subsets x and z as above.

(3) If z = {z1, . . . , zn−c}, choose random a1, . . . ,an−c ∈ K and make
the coordinate substitution zi ← zi − ai.

(4) Choose ≺in as the block order on Mon(z, x) eliminating x with
≺drl on both blocks of variables.

(5) If x = {x1, . . . , xc}, choose ≺out as a block order on Mon(x)
eliminating x ′ := {x1, . . . , xc−1} with ≺drl on x ′ and the total
order by degree on {xc}.

(6) By the elimination property of block orders (Theorem 3.1.1), the
target Gröbner basis G contains a single polynomial gc in the
univariate polynomial ring K(z)[xc].

(7) Use Algorithm 20 to compute only the polynomial gc, ignoring
the rest of the set G. Note that this is indeed possible, in Line 6

of Algorithm 20 we may choose which of the elements in Glift to
actually keep and lift and ignore the rest.

This computation is motivated by the method outlined in Section 3.2.2:
If the considered generic fiber is in shape position w.r.t. xc (see Defini-
tion 3.2.1) then we can use the computed polynomial gc to compute
some of the irreducible components of V(I) where I is the polynomial
ideal under study.
All computations were performed with K = Z/pZ where p was a
randomly chosen prime of 16 bits.
We compared the time this computation took with the computation
of the set G using msolve and which, in this case, just runs the F4

algorithm with a suitable block order on Mon(z, x), following Proposi-
tion 3.2.2. All computations were performed on an Intel Xeon Gold
6244 CPU @ 3.60 GHz with 1.5 TB of memory.
On most small examples in Table A.5, we achieve a comparable timing
with msolve, with the exception of PS(2,12). On the larger example
RD(5) we have a small improvement, while on ED(3,3) we achieve
a much better timing. We point out the preliminary nature of our
implementation and thus the preliminary nature of the benchmarks
recorded here:

(1) The main step in Algorithm 20, Algorithm 19, was implemented
naively, close to the provided pseudocode, i.e. without the use
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of multiplication tensors to compute normal forms as described
in Section 7.3.

(2) Algorithm 21 is not yet implemented, the input Gröbner bases
Hu required by Algorithm 20 where computed naively, i.e. sim-
ply by running msolve on the ideals I+mu where I is the poly-
nomial ideal corresponding to the example in question.

(3) We observed that the linear systems appearing in Algorithm 19

tend to be sparse. Yet, in order to use OSCAR’s black box linear
system solving facilities, we work with dense matrices in our
implementation. This occurs additional overhead due to OSCAR’s
data structure for finite field elements, which even made the
memory allocation for the required matrices a burdensome task.

We observed that the “naive” computation of the Gröbner bases as
in Item (2) formed a significant bottleneck in our computatios. We
therefore expect the timings of our computation to improve a lot once
this step is performed using Algorithm 21.



8
G R Ö B N E R B A S E S O F G E N E R I C F I B E R S A N D
W H I T N E Y S T R AT I F I C AT I O N S

Let R := Q[x] where x := {x1, . . . , xn}. Our goal in this chapter is to
give an algorithm which computes a Whitney stratification (Defini-
tion 2.5.3) of a given algebraic set X := V(F) ⊂ An where F ⊂ R is
a finite set and to show how to computationally minimize a given
Whitney stratification. We assume throughout this chapter that X is
equidimensional. We assume further that throughout this chapter
every occuring algebraic set Y is defined over Q and computationally
represented by a Gröbner of an ideal J s.t. V(J) = Y. We remark, at the
relevant points, how the necessary computations can be performed
using Gröbner bases but present our pseudocode at a high level, with-
out a focus on concrete data structures. In this chapter, we will in
particular have to compute certain Gröbner basis of generic fibers of
ideals. Note that these computations can be made with the algorithms
presented in Chapter 7.
The contents of this chapter are based on the results given in Helmer
and Mohr (2024).

8.1 the algorithms

8.1.1 Computing a Whitney Stratification

The foundational theorem for the algorithm to compute Whitney strat-
ifications in Helmer and Nanda (2023) is Theorem 2.5.1. When applied
immediately, this requires the computation of primary decompositions
of fibers in the conormal space (Definition 2.5.4) Con(X) associated
to X. These fibers are often much more complicated than their image,
making the computation of the required associated primes difficult
even for relatively simple algebraic sets, see Example 1.0.4. In line with
this observation, practical experience has shown that the computation
of these associated primes is precisely the main bottleneck of this
algorithm. We note that, theoretically speaking, for the ideals involved
it is absolutely essential that we obtain both the embedded and the
minimal primes. In particular, algorithms which compute only the
isolated primes of an ideal cannot be used.
In this chapter we adress this challenge by showing how Theorem 2.5.1
can be exploited without having to compute associated primes, by
computing Gröbner bases of certain generic fibers instead. This turns
out to yield a considerable speedup in practice. To this end, we modify
Theorem 2.5.1 as follows, note the similarity to Proposition 3.2.3:

117
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Theorem 8.1.1. Let Y ⊂ Sing(X). Choose any MIS of variables u ⊂ x of any
defining ideal IY of Y. Let J := I(Con(X)) + IY . Let G be a minimal Gröbner
basis of JC(u)[x \ u, y] w.r.t. any monomial order ≺ with G ⊂ C[x, y]. Let

h = lcm {lc≺(g) | g ∈ G} ∈ C[u].

Then

(1) Y \ V(h) is equidimensional of dimension dim(Y).

(2) The pair (X, Y \ V(h)∪ Sing Y) satisfies Whitney’s condition (B).

Proof. (Proof of Item (1)) By Proposition 3.2.3, we have

(J : h∞) = JC(u)[x \ u, y]∩C[x, y]. (8.1)

The ring C(u)[x \ u, y] is the localization of C[x, y] at the multiplicative
set C[u] \ {0}. Hence, using Theorem 3.1 in Eisenbud (1995),

Ass((J : h∞)) = {P ∈ Ass(J) | P ∩C[u] = 0} .

Further, clearly, (J : h∞)∩C[x] = (IY : h∞). For P a minimal prime over
(IY : h∞), choose a minimal prime Q over (J : h∞) with Q∩C[x] = P.
Then we have

0 = Q∩C[u] = P ∩C[u]

and therefore dim(P) ⩾ dim(Y), this follows easily from the definition
of Krull dimension of an ideal. On the other hand, P is also minimal
over IY . Therefore dim(P) ⩽ dim(Y) and finally dim(P) = dim(Y).
This shows that Y \ V(h) is equidimensional of dimension equal to
dim(Y).
(Proof of Item (2)): Let P ∈ Ass(J) such that dim(κX(V(P))) < dim(Y).
This implies again P ∩C[u] ̸= 0, therefore P /∈ Ass(JC(u)[x \ u, y]) and
therefore also P /∈ Ass((J : h∞)). Hence necessarily h ∈ P or, since
h ∈ C[u], κX(V(P)) ⊂ V(h). If then

A :=
⋃

P∈Ass(J)
dim(κX(V(P))<dim(Y)

κX(V(P))

then A ⊂ V(h). By Theorem 2.5.1, the pair (X, Y \A∪ Sing Y) satisfies
Whitney’s condition (B) and since Y \ V(h) ⊂ Y \A, so does (X, Y \

V(h)∪ Sing Y).

To now describe our algorithm based on this theorem, let us briefly
recall how to compute an ideal defining the conormal space of a given
X (see also Section 4.1 in Helmer and Nanda, 2023). From our sequence
F := (f1, . . . , fr) cutting out X, we build the augmented Jacobian matrix

Jy(F) :=


y0 y1 . . . yn−1

∂1f1 ∂2f1 . . . ∂nfn
...

...

∂1fr ∂2fr . . . ∂nfr


with new variables y := {y0, . . . ,yn−1}. Now
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Proposition 8.1.1 (see Section 4.1 in Helmer and Nanda, 2023). Let
c := codim(X), let M be the set of c-minors of J(F) and let My be the set of
c+ 1-minors of Jy(F). Then

Con(X) = V(
(
⟨F⟩+ ⟨My⟩ : M∞)

).

Remark 8.1.1. Recall that the necessary saturation to compute conormal
spaces can be performed using Gröbner basis computations with block
orders, see Lemma 3.1.2 and Lemma 2.2.2.

Now we can give the following algorithm WhitPoints (Algorithm 22),
which given any pair of algebraic sets X and Y with Y ⊂ SingX, returns
a polynomial h as in Theorem 8.1.1. This algorithm is the centerpiece
of our algorithm for computing Whitney stratifications. As previously
mentioned, we avoid the computation of associated primes in the
conormal space of X which an immediate application of Theorem 2.5.1
would require.

Algorithm 22 Computation of h as in Theorem 8.1.1

Input: An equidimensional algebraic set X ⊂ An, any closed Y ⊂
Sing(X)

Output: An element h ∈ C[u] as in Theorem 8.1.1
1: procedure WhitPoints(X, Y)
2: IX ←any ideal defining X, IY ←any ideal defining Y

3: u←any maximally independent subset of variables of IY
4: ≺←any monomial ordering eliminating (x∪ y) \ u
5: G←a ≺-Gröbner basis of I(Con(X)) + IY
6: Minimize G over C(u)[x \ u, y]
7: return h := lcm {lc(g) | g ∈ G}

Remark 8.1.2. In line 2, we use a Gröbner basis of IY and Proposi-
tion 3.2.1 to compute the desired maximally independent subset of
variables of IY . Note further that we could also use the algorithm
presented in Section 7.4 to compute the required Gröbner basis of our
generic fiber.

Theorem 8.1.2. For a given pair of algebraic sets X and Y ⊂ SingX, the
output polynomial h of WhitPoints(X, Y) is such that the pair (X, Y \

V(h)) satisfies Whitney’s condition (B).

Proof. Note that, thanks to Proposition 3.2.2, a Gröbner basis of an
ideal I ⊂ C[x] w.r.t. a monomial order eliminating x \ u, where u ⊂ x,
is also a Gröbner basis of IC(u)[x \ u]. The stated result then follows
from Theorem 8.1.1.

Finally, we can use this routine to give the new algorithm Whitney

(Algorithm 23) below to compute a Whitney stratification of an affine
equidimensional algebraic set X. In this algorithm, each occurring
algebraic set Z is represented as a union its Q-irreducible components
Z =

⋃r
i=1 Zi. Let us define three subroutines used by this algorithm:
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• We define Components(X) to return the set {Z1, . . . ,Zr} (see e.g.
Section 3.2.2 for an algorithm to compute Gröbner bases cutting
out the Zi).

• For two algebraic sets Z,W we define the routine Add(Z,W) to
return Z∪W represented again by Q-irreducible algebraic sets,
i.e. by Components(Z)∪Components(W).

• For a flag W• and a an irreducible algebraic set Z we then define
Update(W•,Z) to change Wdim(Z) to Add(Wdim(Z),Z).

Remark 8.1.3. Note that, as Theorem 8.1.1 does not rely on Y being
irreducible, it is not strictly needed for the correctness of our algorithm
to represent the occuring algebraic sets by their Q-irreducible com-
ponents. We chose to present the algorithm like this here for ease of
reading. It would not be difficult to adapt Algorithm 2 to our situation.
However, as remarked above, the key contribution of this work is to
avoid the computation of associated primes in conormal spaces. Even
with our new method, we observed that the required computations in
conormal spaces are still the bottleneck of our algorithm, compared to
representing algebraic sets by their irreducible components as above.

Algorithm 23 Computation of a Whitney Stratification

Input: An equidimensional algebraic set X ⊂An

Output: A Whitney stratification of X
1: procedure Whitney(X)
2: d← dim(X)

3: W0 ← ∅, ..., Wd−1 ← ∅, Wd ← X

4: for i from d to 0

5: Z1, . . . ,Zr ← Components(Wi)

6: for j,k from 1 to r with j < k

7: Update(W•,Zj ∩Zk)

8: for Z in Components(Wi)

9: Update(W•, Sing(Z))
10: for j from d− 1 to 0

11: for Y in Components(Wj) if Y ⊂ Z

12: h←WhitPoints(Z, Y)
13: Y ′ ← Y ∩V(h)

14: Update(W•, Y ′)

15: return W•

Theorem 8.1.3. For a given equidimensional affine algebraic set X ⊂An,
Whitney(X) terminates and outputs a Whitney stratification of X.

Proof. The termination of the algorithm is clear. Note that the singular
locus of any algebraic set Y consists of the the union of the singular
loci of its Q-irreducible components together with the intersections of
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all its Q-irreducible components: This follows because the local ring
(R/I(Y))p at a smooth point p ∈ Y is a regular local ring (Theorem
16.19 in Eisenbud, 1995) and as such in particular an integral domain
(Corollary 10.10 in Eisenbud, 1995) and so p can only be contained in
one irreducible component of Y. Thus Line 7 and Line 9 in Whitney

garantuee the smoothness of all strata of the output of Whitney(X).
Further, the fact that Whitney’s condition (B) is satisfied for all pair
of the strata of the output of Whitney(X) follows immediately from
Theorem 8.1.2.

8.1.2 Minimizing a Whitney Stratification

Our first goal here is to show how to compute, for a given X ⊂An and
a generic point p in an algebraic subset Y ⊂ X, the sequence m•(X,p)
without being given p explicitly. Since, computationally, we are given
Y only by a Gröbner basis of an ideal cutting out Y we cannot explicitly
construct points in Y using symbolic methods.
Next, we will show that the sequence m•(X, •) is constant on a Zariski-
open subset of Y, if Y is Q-irreducible. These two things combined
allow us to compute, probabilistically, the “generic” multiplicities
m•(X,p), p ∈ Y. Combining this with Theorem 2.5.2 we obtain a
procedure to produce the unique minimal Whitney stratification of
a complex algebraic set given a Whitney stratification computed by
Algorithm 23.
Suppose for the moment that Y = V(f1, . . . , fc) where c ⩽ n and
f1, . . . , fc is such that F := (f1, . . . , fc, ℓc+1, . . . , ℓn) is a reduced regular
sequence, where the ℓi are generic degree one polynomials in x, i.e.
the sequence F is a regular sequence and the determinant of J(F) is
non-zero at every point of Y.
Let now

ϕ : An →An

p := (p1, . . . ,pn) 7→ (f1(p), . . . , fc(p), ℓc+1(p), . . . , ℓn(p)),

and let X̃ and Ỹ be the closures of the images under ϕ of X and
Y respectively. Denote by z := {z1, . . . , zn} the coordinates on the
codomain of ϕ. Note that the origin 0 ∈An lies in Ỹ. Now we have

Proposition 8.1.2. Using the notation above, for any y ∈ ϕ−1(0) we have

m•(X,y) = m•(X̃, 0).

Proof. Since F is a reduced regular sequence, ϕ defines a local (analytic)
isomorphism near any p ∈ Y by the inverse function theorem. For a
finite set of n variables x denote by C{x}p the ring of formal power
series in x centered at p with coefficients in C. Now let

ϕ∗
p : C{z}ϕ(p)/I(X̃)→ C{x}p/I(X)

g 7→ g ◦ϕ.



122 gröbner bases of generic fibers and whitney stratifications

Because the local inverse of ϕ is also analytic, ϕ∗
p is an isomorphism.

Now, the multiplicity of a local ring (S,m) depends only on the as-
sociated graded ring grm(R) (see Section 5.1 in Eisenbud, 1995 for a
definition of associated graded rings and p. 274 therein). Now recall
also that grm(S) = grm(Ŝ), where Ŝ is the m-adic completion of S (see p.
181 in Eisenbud, 1995 for a definition of completions and Corollary
7.13 therein).
We finish the proof by noting that for an ideal J ⊂ C[x], C{x}p/I is the
I(p)-adic completion of C[x]p.

Next suppose that Y ⊂ X is equidimensional of codimension c but no
longer necessarily cut out by a reduced regular sequence. Choose, at
random, a sequence f1, . . . , fc ∈ I(Y), for example as random linear
combinations of given generators of I(Y). Defining Z := V(f1, . . . , fc)
we then have the following

Proposition 8.1.3. Use the notations above. If f1, . . . , fc are sufficiently
generic, there exists a Zariski-open subset U ⊂An such that

Y ∩U = Z∩U

and Y ∩U is Zariski dense in Y. Moreover, for sufficiently generic degree one
polynomials ℓc+1, . . . , ℓn, the sequence

F := (f1, . . . , fc, ℓc+1, . . . , ℓn)

is a reduced regular sequence on Y.

Proof. Since f1, . . . , fc is sufficiently generic, f1, . . . , fc defines a local
regular sequence in I(Y), of maximal length, this follows e.g. from
Lemma 3 in Jeronimo and Sabia (2002). Then, by Corollary 8 in Decker,
Greuel, and Pfister (1999) we have for Z := V(f1, . . . , fc) that

Y = Z \Z \ Y.

Hence, choosing U := An \Z \ Y proves the first part of the proposi-
tion.
Now, at every point p ∈ U, we have I(Y)C[x]p = ⟨f1, . . . , fc⟩C[x]p.
This shows that f1, . . . , fc defines a radical ideal at every point p ∈ U.
By Exercise 12.11 in Eisenbud (1995), the same remains true for the
sequence F := (f1, . . . , fc, ℓc+1, . . . , ℓn) where the ℓi are sufficiently
generic degree one polynomials in x. This means that the Jacobian
determinant of F is nonzero at every p ∈ U, by Corollary 7 in Decker,
Greuel, and Pfister (1999), proving the proposition.

From this we finally obtain the following corollary.

Corollary 8.1.1. Let m•(X̃, 0) be the multiplicity sequence constructed as
above, with Y replaced by Z. Then m•(X̃, 0) = m•(X,p) for every p ∈
ϕ−1(0).
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Proof. Choose U ⊂ Cn as in Proposition 8.1.3. By the same proposition,
with probability 1, the intersection Y ∩V(ℓc+1, . . . , ℓn)∩U ⊂ ϕ−1(0)

is not empty. For any choice of p ∈ Y ∩V(ℓc+1, . . . , ℓn) ∩U we then
have m•(X̃, 0) = m•(X,p) by Proposition 8.1.2.

Now, given an algebraic set X and an algebraic subset Y, we can
compute the sequence m•(X,p) for a random point p ∈ Y as follows:

Algorithm 24 Computing the sequence m•(X,p)

Input: An algebraic set X ⊂An, any equidimensional closed Y ⊂ X.
Output: m•(X,p) for a random point p.

1: procedure Mult(X, Y)
2: g1, . . . ,gr ← generators of I(Y)
3: c← codim(Y)

4: Choose f1, . . . , fc as random linear combinations of the gi
5: Choose ℓc+1, . . . , ℓn as random degree one polynomials
6: ϕ← the map given by x 7→ (f1, . . . , fc, ℓc+1, . . . , ℓn)
7: Compute ideals defining δ0(ϕ(X), 0), . . . , δdim(X)−1(ϕ(X), 0)
8: return (m0(δ0(ϕ(X), 0)), . . . ,m0(δdim(X)−1(ϕ(X), 0)))

Remark 8.1.4. Let us make the computational steps in Algorithm 24

a bit more explicit: Given generators for an ideal defining Y, we can
compute generators of the radical ideal I(Y) in Line 2 using any of the
algorithms in Section 2.1 of Decker, Greuel, and Pfister (1999).
In Line 7, an ideal defining ϕ(X) is again computed using Gröbner
basis computations with block orders, see e.g. Proposition 15.30 in
Eisenbud (1995). Using the notation of Proposition 8.1.1, ideals defin-
ing the necessary local polar varieties can then be computed as ideals
of the form (

I(ϕ(X)) + ⟨My⟩+ L : M∞)
∩C[x]

where My are the suitable minors of the augmented Jacobian matrix
associated to generators of I(ϕ(X)), M are the suitable minors of
the Jacobian matrix of generators of I(ϕ(X)) and L is a collection of
randomly chosen degree one forms, defining a linear space of suitable
dimension in Pn−1.
In Line 8, to compute the required multiplicities we use degree com-
putations via Gröbner bases as described in Harris and Helmer (2019)
and implemented in the SegreClasses Macaulay2 package, see in par-
ticular Theorem 5.3 in Harris and Helmer (2019). Alternatively one
can use standard basis computations, see e.g. Sayrafi (2017) for details.
Finally, we remark that, to compute the multiplicities in Line 8 cor-
rectly, we require the ideals cutting out our local polar varieties to
be radical. This is generically ensured once we work with the radical
ideal I(X̃): Then the ideal defining Con(X̃) following Proposition 8.1.1
is also radical (see Proposition 2.9 in Flores and Teissier, 2017), and
then the ideals defining our local polar varieties are also radical for
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generic choices of linear subspace, see Remark 3.10 in Flores and
Teissier (2017).

Now we have the ability to (probabilistically) minimize a given Whit-
ney stratification. For a given algebraic set X ⊂ Cn, the output of
Whitney(X) consists of a flag

W0 ⊂W1 ⊂ · · · ⊂Wd = X

on X. Each Wi is given by its Q-irreducible components Wi1, . . . ,Wiri .
Let us define W00 := X. These Wij may now be organized in a tree as
follows: Each node of this tree contains one of the Wij. The children of
a node containing Wij are given by those Wi+1,k with Wi+1,k ⊂Wij.
Let us call such a data structure a Whitney tree of X. Note that such a
tree may be extracted from the output of Whitney(X) by ideal con-
tainment checks using Gröbner bases and normal form computations,
here we suppose that every occuring irreducible algebraic set is given
by a Gröbner basis of the radical ideal cutting it out. From such a tree,
we may now minimize a given Whitney stratification as follows:

Algorithm 25 Minimizing a Whitney Stratification

Input: A Whitney tree TX on an algebraic set X.
Output: A minimal Whitney stratification of X.

1: for each node W in TX

2: P ← {(W,Z, Y) | Z, Y are nodes of TX with W ⊂ Z ⊂ Y}

3: if Mult(Y,W) = Mult(Y,Z) for all (W,Z, Y) ∈ P

4: Delete the node W from TX

5: for each level i of TX

6: Wd−i ← union of all components in level i

7: return W•

Lemma 8.1.1. Algorithm 25 is correct and terminates.

Proof. The termination is clear. Suppose that we have a triple of alge-
braic sets W ⊂ Z ⊂ Y with W and Z irreducible and that for generic
w ∈ W and z ∈ Z we have m•(Y,w) = m•(Y, z). Then there exists
a Zariski-dense subset U of Z such that U ∩W ̸= ∅ and such that
m•(Y, •) is constant on U. Hence the points in W at which the pair
(Y,Z) does not satisfy Whitney’s condition (B) have at least codimen-
sion one in W by Theorem 2.5.2. In the situation of WhitneyMinimize,
W can thus be removed without destroying the property of the output
flag W• being a Whitney stratification. This proves the correctness.

Remark 8.1.5. Note that we may also combine WhitneyMinimize

directly with WhitPoints: For given X and irreducible Y let h be the
output of WhitPoints(X, Y) and let A := Y ∩V(h). We know that
the set of points in Y where Whitney’s condition (B) fails to hold
with respect to X and Y is contained in A. We may then compute the
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irreducible components A1, . . . ,Ar of A and compare for each Ai the
output of Mult(X, Y) with Mult(X,Ai). If these sequences are equal
we recursively go through the same procedure with X and Ai. If they
are not equal we append Ai to a list of output components which we
return in the end. This is potentially more optimal then minimizing
after the stratification is finished because it prevents a build up of
unneeded algebraic sets.

8.2 benchmarks

In this section we collect some runtime comparisons of the new Whit-
ney stratification algorithm described in this chapter with the algo-
rithm of Helmer and Nanda (2023) for a variety of examples. These
runtimes are collected in Table A.6, we record in addition whether the
algorithms produced a minimal Whitney stratification and the time it
took to minimize the Whitney stratification produced by Algorithm 23.
The implementation of our Algorithm used to create these benchmarks
is available in version 2.11, and above, of the WhitneyStratifications

Macaulay2 package, which is available on the website of the first
author of the paper corresponding to this chapter at:

http://martin-helmer.com/Software/WhitStrat/

WhitneyStratifications.m2.

With this Macaulay2 package loaded and given a polynomial ideal I
the implementation of Algorithm 23 is called with whitneyStratify(I,

AssocPrimes=>false), while the algorithm of Helmer and Nanda
(2023) is called with whitneyStratify(I, AssocPrimes=>true).
The computations of the Gröbner bases of generic fibers needed to ap-
ply Theorem 8.1.1 are performed as in the pseudocode of Algorithm 22,
i.e. without using the algorithms presented in Chapter 7.

http://martin-helmer.com/Software/WhitStrat/WhitneyStratifications.m2
http://martin-helmer.com/Software/WhitStrat/WhitneyStratifications.m2
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We close this thesis by outlining some research perspectives following
from the content of Chapter 5, Chapter 6 and Chapter 7.

further incorporation of witness sets in Algorithm 15

In the context of Chapter 5, where Algorithm 15 is developed, recall
that we frequently perform the following operation: Given an equidi-
mensional affine cell X and h ∈ R, compute a Gröbner basis of the
ideal (IX : h∞) where IX was such that X = V(IX).
Experimentally, when dim(X) > 0, this can be significantly harder
than computing a Gröbner basis of IX. To better understand this
behavior, let us briefly explain how a saturation computation proceeds.
Suppose IX = ⟨f1, . . . , fr⟩. Then, during a Gröbner basis computation
for IX + ⟨f⟩, every occuring polynomial p is of the form

p = a1f1 + · · ·+ arfr + af.

Algorithm 10 gives us efficient means to track just the element a for
each p as above during such a computation. Whenever p = 0, we may
then insert a into the current intermediate Gröbner basis and proceed,
at the end we obtain a Gröbner basis of the ideal (IX : f∞) + ⟨f⟩. Even
when we use Lemma 3.1.2 to compute (IX : f∞), i.e. when we compute
a Gröbner basis of IX + ⟨tf− 1⟩ for a new variable t w.r.t. a monomial
order eliminating t, the computation will behave similarly: an element
p as above will correspond to the element tp− a in this computation.
Additional overhead is therefore incurred, because we are computing a
Gröbner basis of (IX : f∞)+ ⟨f⟩ and not only for (IX : f∞). We refer also
to Berthomieu, Eder, and Safey El Din (2023) where a new saturation
algorithm based on F4 is designed which faces similar issues when X

is positive-dimensional.
This overhead tends however not to be a problem when dim(X) =

0: Then (IX : h∞) + ⟨h⟩ = 1, which means that our Gröbner basis
computation is expected to terminate as soon as a Gröbner basis of
(IX : h∞) is identified.
This is precisely the reason for the introduction of Witness sets in
Chapter 5, which reduces the necessity of computing positive dimen-
sional saturation ideals: Instead of working with the affine cell X we
work with the zero-dimensional affine cell X∩ L where L is a generic
linear space of codimension equal to dim(X). However, in Chapter 5,
this did not eliminate completely the necessity to compute Gröbner
basis of ideals of the form (IX : h∞).
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We could design a similar algorithm to Algorithm 15 using only wit-
ness sets of affine cells (i.e. eliminating the necessity to work directly
with ideals of the form IX) if one is able to answer the following

Question 1. Given:

(1) a finite set of polynomials F,

(2) d degree one polynomials L and a Gröbner basis of (⟨F⟩ : h∞) +

⟨L⟩ s.t. X := V(F) \V(h) is equidimensional of dimension d (note
that h is not given) and

(3) another polynomial f regularly intersecting X,

compute a Gröbner basis of the zero-dimensional ideal (⟨F⟩+ ⟨f⟩ : h∞)+

⟨L \ {ℓ}⟩ where ℓ ∈ L is chosen at will.

We refer to Lecerf (2003) where a similar question is treated in the
context of geometric resolutions and to Duff, Leykin, and Rodriguez
(2022) where a similar question is treated in the context of numerical
algebraic geometry.
A potential answer to this question lies in the methods developed
in Chapter 7: One could imagine that a potential strategy lies in
successively computing Gröbner bases of the ideals

(⟨F⟩ : h∞) + ⟨ℓk⟩+ ⟨L \ {ℓ}⟩

for increasing values of k ∈N until a Gröbner basis G of the generic
fiber of this ideal over K(ℓ) can be extracted.
Then let G ′ be the set obtained from G by multiplying each element
g ∈ G by the denominators of its coefficients and let h ∈ K[ℓ] be
the least common multiple of the leading coefficients of the elements
of G ′, regarded as a set with coefficients in K(ℓ). Then, following
Proposition 3.2.3, we have(

G ′ + ⟨f⟩ : h∞)
= (⟨F⟩+ ⟨f⟩ : h∞) + ⟨L \ {ℓ}⟩.

If this question can be solved a natural follow-up question would
be, given that we are then essentially only computing with zero-
dimensional ideals, for which the complexity of computing Gröbner
bases is well controlled (see e.g. Lazard, 1983), whether an interesting
complexity statement could be derived for the resulting algorithm.

Question 2. In Jeronimo and Sabia (2002) and Lecerf (2000), mild
genericity assumptions are used to obtain complexity statements for
incremental decomposition algorithms, see e.g. Lemma 3 in Jeronimo
and Sabia (2002). These are used to control the number of components
introduced by each incremental decomposition step. What would be
the complexity of our algorithm based on witness sets using the same
genericity assumptions?
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further incorporation of Algorithm 18 with sgb compu-
tations

Recall that Algorithm 18 utilizes syzygy computations of finite se-
quences of polynomials to decompose algebraic sets. Essentially, given
a finite sequence of polynomials F := (f1, . . . , fr) ⊂ R and a polynomial
h ∈ R, we

(1) Compute a polynomial g ∈ R s.t. gfk ∈ ⟨f1, . . . , fk−1, fk+1, . . . , fr⟩.

(2) Decide if g ∈ (⟨F⟩ : h∞).

The first step was accomplished with sGB computations, see Algo-
rithm 16. The second step was then accomplished by knowing a
Gröbner basis of the ideal (⟨F⟩ : h∞).
Suppose now that h = 1. Then, assume that f1, . . . , fr, are homo-
geneous, that Algorithm 16 works with ≺=≺drl and returns g,k
with deg(g) = d. Then Algorithm 16 has in particular computed
a d+ deg(fk)-truncated Gröbner basis G of ⟨F⟩, which has the con-
sequence that Reduce(G,≺drl,g) returns zero if and only if g ∈ ⟨F⟩
because deg(g) < d+ deg(fk). Hence, if h = 1 we can avoid precom-
puting a Gröbner basis of ⟨F⟩!
Avoiding the precomputation of a Gröbner basis of (⟨F⟩ : h∞) when
h ̸= 1 is more difficult: It is not possible, even in the homogeneous set-
ting, to compute a d-truncated Gröbner basis of (⟨F⟩ : h∞), essentially
because the localized ring Rh does not have a natural grading by N.
We therefore ask

Question 3. Design a signature-based algorithm which computes a
Gröbner basis of (⟨F⟩ : h∞) and satisfies the following: suppose that
it has computed some intermediate Gröbner basis G and that, using
this algorithm, one computes g,k as above. Ensure that Algorithm 18

terminates when we replace the membership check of g in (⟨F⟩ : h∞)

by a check whether Reduce(G,≺drl,g) is zero or not.

Essentially, we would want to replace knowing full Gröbner bases of
the ideals of the affine cells involved in Algorithm 18 by knowing only
partial Gröbner bases, up to some degree in the homogeneous setting,
and decomposing at natural points during their computation, i.e. when
we discover syzygy cofactors g as above. The algorithm designed in
Chapter 4 showed that this design philosophy can signficantly cut
down on computational overhead.
Another, more vague, question is then

Question 4. If one follows this design principle, how do the proce-
dures Hull and CloRemove in Algorithm 18 need to change?

More precisely, recall that for a given X and a polynomial g, Hull(X,g)
proceeds by first computing a Gröbner basis H for (IX : g∞) and
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then calling CloRemove(X,H). But, following the new design philos-
ophy, we would know H only up to some degree so we cannot call
CloRemove directly. Hence, more asynchronous methods are required
for decomposing a given affine cell.

specialized variants of fglm for generic fiber computa-
tion

In Chapter 7, we adapted the FGLM algorithm to compute Gröbner
bases of generic fibers of polynomial ideals. Roughly, the task was
the following: Given an ideal I ⊂ K[z, x] s.t. z is an MIS of I, and
a Gröbner basis of I w.r.t. some monomial order ≺in, compute the
reduced Gröbner basis G of gen(I, z) w.r.t. another monomial order
≺out.
To this end, we used Hensel lifting techniques and normal form
computations together with linear algebra in the finite-dimensional
K-vector spaces K[x, z]/I+mk where m := ⟨z⟩.
For the original FGLM algorithm given in Faugère, Gianni, Lazard,
and Mora (1993), which converts a given Gröbner basis of a zero-
dimensional ideal to a Gröbner basis of the same ideal w.r.t. another
monomial order, the required normal form and linear algebra compu-
tations are done using multiplication tensors as we did in Section 7.3.
When the zero-dimensional ideal of interest is in shape position (Defi-
nition 3.2.1) and the target monomial order is the lexicographic order,
a specialized variant of FGLM, called sparse FGLM has been developed
and analyzed, see Faugère, Gaudry, Huot, and Renault (2014) and
Faugère and Mou (2017) and additonal efficiency is gained under
certain stability assumptions, see Neiger and Schost (2020). In the
notation of Definition 3.2.1, this algorithm computes the univariate
polynomial gI as the minimal polynomial of the multiplication matrix
associated to the last variable using Wiedemann’s algorithm. This
improves the cubic complexity of the original FGLM algorithm to the
exponent of matrix multiplication. We ask

Question 5. With the particular application of irreducible decomposi-
tion as in Section 3.2.2 in mind, how can the sparse FGLM algorithm
be combined with Hensel lifting techniques to compute lexicographic
Gröbner bases of generic fibers in shape position? Do we preserve a
complexity quasi-linear in the precision in z up to which we compute,
as in Section 7.3?

In Berthomieu, Eder, and Safey El Din (2023) a variant of FGLM is also
given to compute saturation ideals. This algorithm identifies elements
in a saturation of the form (I : f∞) for a polynomial ideal I and a
polynomial f as elements in the kernel of the multiplication matrix
associated to f in some staircase of I. An algorithm for irreducible de-
composition as in Section 3.2.2 would also require computing generic
fibers of saturation ideals. We therefore ask
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Question 6. How can the FGLM variant given by Berthomieu, Eder,
and Safey El Din (2023) be combined with Hensel lifting techniques to
compute generic fibers of saturation ideals?





Part III

A P P E N D I X
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A P P E N D I X

a.1 polynomial systems used in benchmarks

We gather here the polynomial systems used in the benchmarks for
our algorithms together with references and brief explanations.

• C1, C2 and C3 are certain jacobian ideals of single multivariate
polynomials which define singular hypersurfaces.

• Cyclic(n), encoding the standard cyclic benchmarks in computer
algebra in n variables.

• ED(d,n) encodes the parametric euclidean distance problem for a
hypersurface of degree d in n variables, see Draisma et al. (2014).

• PS(n) encodes the singular points of an algebraic set cut out by
polynomials

f1, . . . , fn−1,g1, . . . ,gn−1

with fi ∈ K[x1, . . . , xn−2, z1, z2], gi ∈ K[y1, . . . ,yn−2, z1, z2], the
fi being chosen as random dense quadrics, and gi chosen such
that gi(x1, . . . , xn−2, z1, z2) = f, i.e. as a copy of fi in the vari-
ables y1, . . . ,yn−2, z1, z2.

• The examples R1, R2 and R3 come from Example 1.0.1.

• The RD(d) systems are randomly generated sequences of 3 poly-
nomials of degree d in 4 variables.

• Sing(n) encodes the critical points of the restriction of the pro-
jection on the first coordinate to a (generically singular) hyper-
surface which is defined by the resultant in xn+1 of two

• SOS(s,n) encodes the critical points of the restriction of the
projection on the first coordinate to a hypersurface which is a
sum of s random dense quadrics in K[x1, . . . , xn], random dense
quadrics A,B in K[x1, . . . , xn+1].

• The Steiner polynomial system, coming from Breiding, Sturmfels,
and Timme (2020).

• All remaining examples are part of the BPAS library (Asadi et al.,
2021) for triangular decomposition.

135



136 appendix

For the benchmarks of Algorithm 23, displayed in Table A.6, the
following examples were used:
The Whitney Cusp is defined as V(y2+ z3−x2z2). The other examples
are given by

X1 = V(x71 − 2 x51x4 + x31x
2
4 + x21x

2
2 − x1x

2
2x3 + x32) ⊂ C4

X2 = V
(
x21x3 − x22, x42 − x1x

2
2 − x3x

2
4, x21x

2
2 − x31 − x24

)
⊂ C4

X3 = V
(
x61 + x62 + x41x3x4 + x33

)
⊂ C4

X4 = V( − p1y1y3y4 − p1y2y3y4 − sy1y3y5−

p2y1y4y5 − ty2y4y5) ⊂ C9

X5 = V(x31 − 2x21x4 + x31 + x25x4 + x22x1 − x2x1x3 + x35) ⊂ C5

X6 = V
(
x2x

2
5 − x21, x2x4x5 − x23 − x2, x21x4 − x23x5 − x2x5

)
⊂ C5

X7 = V( − p1x1x3x4 − p1x2x3x4 − sx1x3x5 − p2x1x4x5 − tx2x4x5−

p1x3x4x5) ⊂ C9

X8 = V(x1x
3
2 − 2x1x

2
2x4 + x1x2x3x5 + x1x2x

2
4 + x1x2x5 − x1x3x4x5−

x1x4x5 − x22x3x5 − x22x4 − x22x5 + x2x3x4x5 − x2x3x5+

2x2x
2
4 + x2x4x5 − x2x5 − x23x

2
5 + x3x4x5 − 2x3x

2
5−

x34 + x4x5 − x25) ⊂ C5

X9 = V( − x21x3x5 − x21x4x5 + x21x5 + x1x2x3x4 + x1x2x3x5+

x1x2x4x5 − x1x2x4 − x1x2x5 − x1x
2
3x4 + x1x

2
3x5 − x1x3x

2
4+

x1x3x4x5 + 2x1x3x4 − x1x3x
2
5 − 2x1x3x5 + x1x

2
4x5 + x1x

2
4−

x1x4x
2
5 − x1x4x5 − x1x4 + x1x

2
5 + x1x5 − x22x3x4 + x22x4+

x2x
2
3x4 − x2x

2
3x5 + x2x3x

2
4 − 2x2x3x4 + 2x2x3x5 − x2x

2
4x5−

x2x
2
4 + x2x4 − x2x5 − x23x

2
4 + x23x4x5 + x3x

2
4x5+

2x3x
2
4 − x3x4x

2
5 − 2x3x4x5 − x24x5 − x24 + x4x

2
5+

x4x5) ⊂ C5



a.2 experimental data

In the tables, the different algorithms to which we compare ourselves
are indicated by symbols as follows:

• †: Homological method (see Eisenbud, Huneke, and Vasconcelos,
1992).

• ‡: Elimination method (see Gianni, Trager, and Zacharias, 1988).

• $: Regular chains (see Lemaire, Maza, and Xie, 2005).

• £: Irreducible decomposition.

In the tables an ∞ sign means that the corresponding algorithm took
more than 50 times the time of the fastest algorithm recorded in the
same row or that an error occured during the computation, for exam-
ple due to a memory limit we set. In Table A.6, in the “Minimization”
column it means that the computation took more than 8 hours. All
timings are given in seconds unless otherwise indicated.



Table A.1: Comparing Algorithm 11 and Algorithm 13

Alg. 10 arith. op. Alg. 13 arith. op. Alg. 10 Alg. 13 Ratio Maple: GB Maple: Alg. 11 Ratio

Cyclic(8) 1.2 · 1010 1.3 · 1011
4m 40m 10 1.2 154m 7700

PS(12) 5.3 · 107 3.1 · 108
1.16 5.2 4.5 0.268 3.44 13

Sing(10) 5.6 · 107 6.5 · 107
1.9 2.9 1.5 0.11 1.642 14.5

Sing(9) 2.5 · 107 2.9 · 107
1.1 1.4 1.27 0.06 0.788 13.1

SOS(5,4) 1.3 · 108 1.1 · 108
8.5 7.3 0.85 0.022 0.479 21.3

SOS(6,3) 2.1 · 107 2.1 · 107
1.11 1.4 1.26 0.021 0.261 12.4

SOS(6,4) 4.8 · 109 3.8 · 109
148 169 1.14 0.172 22.7 132

SOS(6,5) 4.2 · 109 2.0 · 109
75 43 0.57 0.458 10.38 22.7

SOS(7,3) 1.3 · 108 6.7 · 108
5.2 41 7.9 0.047 7.162 152.4

SOS(7,4) 6.5 · 109 4.5 · 1010
3m 32m 10.7 0.433 1h 8314

SOS(7,5) 7.2 · 1010 3.5 · 1011
25m 20h 48 2.294 ∞ ∞

SOS(7,6) 1.7 · 1012 3.0 · 1012
31h 73h 2.4 14.348 5.5h 23

Steiner 3.1 · 1010 2.3 · 1011
4.2m 42m 10 27 13m 28.9



Table A.2: Comparing Algorithm 13 with other Decomposition Methods

Alg. 13 Singular: † Singular: ‡ Maple: $ Macaulay2: ‡

Cyclic(8) 40m segfault >35h ∞ ∞
PS(10) 0.3 40 ∞ ∞ ∞
PS(12) 5.2 ∞ ∞ ∞ ∞
PS(6) 0.008 <1 <1 0.29 0.07

PS(8) 0.03 <1 23m 5.82 13.78

Sing(10) 2.9 ∞ ∞ ∞ ∞
Sing(4) 0.02 1 ∞ 91.32 0.42

Sing(5) 0.07 4 ∞ ∞ 1.94

Sing(6) 0.15 56 ∞ ∞ 16.64

Sing(7) 0.35 8m ∞ ∞ 289

Sing(8) 0.68 23m ∞ ∞ ∞
Sing(9) 1.4 ∞ ∞ ∞ ∞
SOS(4,2) 0.03 <1 <1 19.4 0.16

SOS(4,3) 0.03 1 3m 14m 0.63

SOS(5,2) 0.02 <1 ∞ ∞ 0.37

SOS(5,3) 0.34 ∞ ∞ ∞ 9.35

SOS(5,4) 7.3 ∞ ∞ ∞ 183

SOS(6,2) 0.17 <1 ∞ ∞ 0.7

SOS(6,3) 1.4 ∞ ∞ ∞ 107

SOS(6,4) 169 ∞ ∞ ∞ ∞
SOS(6,5) 43 ∞ ∞ ∞ ∞
SOS(7,2) 2.91 <1 ∞ 2.94 0.18

SOS(7,3) 41 ∞ ∞ ∞ ∞
SOS(7,4) 32m ∞ segfault ∞ ∞
SOS(7,5) 20h segfault segfault ∞ ∞
SOS(7,6) 73h segfault segfault ∞ ∞
Steiner 42m ∞ segfault ∞ ∞



Table A.3: Comparing Algorithm 15 with other Decomposition Methods

nb. comps. Algorithm 15 Maple: $ Oscar: ‡ Magma: † Magma: £

8-3-config-Li 23 1.61 16.07 ∞ ∞ 64.62

Cyclic(8) 6 381.20 ∞ ∞ ∞ ∞
dgp6 3 +0.25 53.26 2.19 ∞ 1.21

Gonnet 3 0.19 2.13 2.78 ∞ 1.35

KdV ∞ 352.61 ∞ ∞ 7108.56

Leykin-1 13 2.63 4.38 640.52 ∞ 1.37

C1 4 128.84 ∞ ∞ ∞ ∞
C2 4 0.27 100.29 151.88 ∞ 1.96

C3 13 9.67 54.51 6.83 0.35 1.49

MontesS16 6 1.92 2.66 2.02 1.40 1.49

PS(10) 2 1.70 ∞ 29.72 ∞ 5.66

PS(12) 2 51.21 ∞ ∞ ∞ 2060.03

PS(6) 2 0.03 0.25 1.67 0.50 0.34

PS(8) 2 0.09 4.46 1.72 1.19 0.81

Sing(10) 2 0.36 ∞ ∞ ∞ ∞
Sing(8) 2 0.13 ∞ 995.12 ∞ ∞
Sing(9) 2 0.22 ∞ ∞ ∞ ∞
SOS(6,3) 2 0.10 ∞ ∞ ∞ ∞
SOS(6,4) 2 4.83 ∞ ∞ ∞ ∞
SOS(6,5) 2 13.72 ∞ ∞ ∞ ∞
Steiner 2 869.79 ∞ ∞ ∞ ∞
sys2161 33 7.54 28.76 ∞ ∞ 7.57

sys2874 5 0.26 201.84 1.87 8.42 9.72

sys2880 50 4.27 144.30 1.80 3.44 4.00

sys2882 ∞ 38.78 ∞ ∞ ∞



Table A.4: Comparing Algorithm 18 with Algorithm 15

Algorithm 18 Algorithm 15

Cyclic(8) ∞ 381.2

C1 15.0 129.0

C3 0.8 10.0

PS(10) 0.2 1.7

PS(12) 6.3 51.0

PS(14) 248.2 3128.3

PS(16) 13666.2 ∞
Sing(10) 3.8 1.0

SOS(6,4) 6.0 5.0

SOS(6,5) 24.9 14.0

SOS(7,4) 14.2 24.4

SOS(7,5) 112.2 ∞
Steiner 404.9 870.0

sys2353 10.9 1.6

sys2161 26.2 7.54

ED(3,4) 30.7 294.1

ED(3,5) 828.1 ∞



Table A.5: Benchmarks for Algorithm 20

Algorithm 20 msolve with ≺out

ED(3,3) 237.9 43521.43

R1 0.01 0.01

R2 0.01 0.01

R3 0.01 0.01

C2 2.75 0.03

C3 0.19 0.01

PS(2,10) 0.8 0.3

PS(2,12) 44.82 7.3

Sing(2,10) 0.2 0.1

SOS(5,4) 1.2 0.3

SOS(6,4) 11.97 30.35

SOS(6,5) 22.19 26.61

RD(3) 4.29 0.11

RD(4) 33.42 13.43

RD(5) 729.51 780.92

Table A.6: Benchmarks for Algorithm 23

Algorithm in Helmer and Nanda (2023) Minimal Algorithm 23 Minimal Minimization

Whitney Cusp 0.12 Yes 0.09 Yes 0.3

X1 ∞ - 7.3 No 140.5

X2 85.3 Yes 82.8 No 1.1

X3 4.8 No 4.6 No 68.1

X4 182.3 - 192.7 - ∞
X5 2.3 Yes 1.5 Yes 0.5

X6 1.3 Yes 0.9 Yes 2.4

X7 ∞ - 6080.8 - ∞
X8 ∞ - 12 - ∞
X9 ∞ - 1200 - ∞
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